CHEN Yong, ZHENG Yu, ZHANG Hong-qing. The Hamiltonian Equations in Some Mathematics and Physics Problems[J]. Applied Mathematics and Mechanics, 2003, 24(1): 19-24.
Citation: CHEN Yong, ZHENG Yu, ZHANG Hong-qing. The Hamiltonian Equations in Some Mathematics and Physics Problems[J]. Applied Mathematics and Mechanics, 2003, 24(1): 19-24.

The Hamiltonian Equations in Some Mathematics and Physics Problems

  • Received Date: 2001-04-03
  • Rev Recd Date: 2002-06-18
  • Publish Date: 2003-01-15
  • Some new Hamiltonian canonical system are discussed for a series of partial differential equations in Mathematics and Physics. It includes the Hamiltonian formalism for the symmetry 2-order equation with the variable coefficients, the new nonhomogeneous Hamiltonian representation for 4-order symmetry equation with constant coefficients, the one of MKdV equation and KP equation.
  • loading
  • [1]
    FENG Kang.On difference schemes and symplectic geometry[A].In:D Schmidt Ed.Proceeding of 1984 Beijing International Symposium on Differential Geometry and Differential Equations[C].Beijing:Science Press,1985,42-58.
    [2]
    Olver P J.Applications of Lie Group to Differential Equations[M].New York:Springer-Verlag,1986.
    [3]
    Gardner C S.Korteweg-de Vries equations and generalization Ⅳ The Korteweg-de Vries equations as a Hamiltonian system[J].J Math Phys,1971,12(8):1548-1551.
    [4]
    Magri F.A simple model of the integrable Hamiltonian equation[J].J Math Phys,1978,19(5):1156-1162.
    [5]
    Abraham R,Marsden J E,Ratiu T.Manifolds Tensor Analysis and Applications[M].New York:Springer-Verlag,1990.
    [6]
    郑宇,张鸿庆.固体力学中的Hamilton正则表示[J].力学学报,1996,28(1):119-125.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2184) PDF downloads(936) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return