ZHANG Neng-hui, CHENG Chang-jun. Two-Mode Galerkin Approach in Dynamic Stability Analysis of Viscoelastic Plates[J]. Applied Mathematics and Mechanics, 2003, 24(3): 221-228.
Citation: ZHANG Neng-hui, CHENG Chang-jun. Two-Mode Galerkin Approach in Dynamic Stability Analysis of Viscoelastic Plates[J]. Applied Mathematics and Mechanics, 2003, 24(3): 221-228.

Two-Mode Galerkin Approach in Dynamic Stability Analysis of Viscoelastic Plates

  • Received Date: 2001-09-04
  • Rev Recd Date: 2002-12-16
  • Publish Date: 2003-03-15
  • The dynamic stability of viscoelastic thin plates with large deflections was investigated by using the largest Liapunov exponent analysis and other mumerical and analytical dynamic methods.The material behavior was described in terms of the Boltzmann superposition principle.The Galerkin method was used to simplify the original integro-partial-differential model into a two-mode approximate integral model, which further reduced to an ordinary differential model by introducing new variables.The dynamic properties of one-mode and two-mode truncated systems were numerically compared.The influence of viscoelastic properties of the material, the loading amplitude and the initial values on the dynamic behavior of the plate under in-plane periodic excitations was discussed.
  • loading
  • [1]
    Bolotin V V.The Dynamic Stability of Elastic System[M].San Francisco:Holden Day,1964.
    [2]
    程昌钧,张能辉.粘弹性矩形板的混沌和超混沌行为[J].力学学报,1998,30(6):690-699.
    [3]
    ZHANG Neng-hui,CHENG Chang-jun.Chaotic behavior of viscoelastic plates in supersonic flow[A].In:CHIEN Wei-zang,CHENG Chang-jun,DAI Shi-qiang,et al Eds.Proc 3rd Inter Conf on Nonlinear Mech[C].Shanghai:Shanghai University Press,1998,432-436.
    [4]
    ZHU Yuan-yuan,ZHANG Neng-hui,Miura F.Dynamical behavior of viscoelastic rectangular plates[A].In:CHIEN Wei-zang,CHENG Chang-jun,DAI Shi-qiang,et al Eds.Proc 3rd Inter Conf on Nonlinear Mech[C].Shanghai:Shanghai University Press,1998,445-450.
    [5]
    张能辉,程昌钧.面内周期激励下粘弹性矩形板的混沌和周期行为[J].固体力学学报,2000,21(增刊):160-164.
    [6]
    陈立群,程昌钧.粘弹性板混沌振动的输出变量反馈线性化控制[J].应用数学和力学,1999,20(12):1229-1234.
    [7]
    Aboudi J,Cederbaum G,Elishakoff I.Dynamic stability analysis of viscoelastic plates by Liapunov exponents[J].J Sound Vib,1990,139(3):459-467.
    [8]
    Touati D,Cederbaum G.Dynamic stability of nonlinear viscoelastic plates[J].Int J Solids Struct,1994,31(17):2367-2376.
    [9]
    Wojciech S,Klosowicz M.Nonlinear vibration of a simply supported viscoelastic inextensible beam and comparison of methods[J].Acta Mechanica,1990,85(1):43-54.
    [10]
    CHEN Li-qun,CHENG Chang-jun.Dynamical behavior of nonlinear viscoelastic columns based on 2-order Galerkin truncation[J].Mech Res Comm,2000,27(4):413-419.
    [11]
    ZHANG Neng-hui,CHENG Chang-jun.Non-linear mathematical model of viscoelastic thin plates with its applications[J].Comput Methods Appl Mech Engng,1998,165(4):307-319.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2732) PDF downloads(674) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return