YAN Qing-you. The Properties of a Kind of Random Symplectic Matricess[J]. Applied Mathematics and Mechanics, 2002, 23(5): 526-532.
Citation: YAN Qing-you. The Properties of a Kind of Random Symplectic Matricess[J]. Applied Mathematics and Mechanics, 2002, 23(5): 526-532.

The Properties of a Kind of Random Symplectic Matricess

  • Received Date: 2000-08-30
  • Rev Recd Date: 2001-12-04
  • Publish Date: 2002-05-15
  • Several important properties of a kind of random symplectic matrix used by A.Bunse-Gerstner and V.Mehrmann are studied and the following results are obtained: 1) It can be transformed to Jordan canonical form by orthogonal similar transformation.2) Its condition unmber is a constant.3) The condition unmber of it is about 2.618.
  • loading
  • [1]
    Benner P,Farbender H.The symplectic eigenvalue problem,the butterfly form,the SR algorithm,and the Lanczos method[J].Linear Alg Appl,1998,19(47):275-276.
    [2]
    Bunse-Gerstner A.Mehrmann V.A symplectic QR-like Algorithm for the solution of the real algebraic Riccati equation[J].IEEE Trans Automat Contr,1986,AC-31:1104-1113.
    [3]
    Benner P,Mehrmann V,Xu H.A numerically stable,structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils[J].Numer Math,1998,78:329-358.
    [4]
    Jacob B.Linear Algebra[M].New York:W H Freeman and Company,1990.
    [5]
    Saad Y.Numerical Methods for Large Eigenvalue Problems[M].M13 9PL,Manchester,UK:Manchester University Press,1992.
    [6]
    Golub G H,Van Loan C.Matrix Computations[M].Third Edition.The Johns Hopkins University Press,1996.
    [7]
    Van Loan C.A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix[J].Linear Algebra Appl,1984,16:233-251.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2242) PDF downloads(683) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return