QI Zhao-hui, Alexander P. Seyranian. On the Stability Boundary of Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 2002, 23(2): 173-178.
Citation: QI Zhao-hui, Alexander P. Seyranian. On the Stability Boundary of Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 2002, 23(2): 173-178.

On the Stability Boundary of Hamiltonian Systems

  • Received Date: 2000-06-22
  • Rev Recd Date: 2001-09-18
  • Publish Date: 2002-02-15
  • The criterion for the points in the parameter space being on the stability boundary of linear Hamiltonian system depending on arbitrary numbers of parameters was given, through the sensitivity analysis of eigenvalues and eigenvectors. The results show that multiple eigenvalues with Jordan chain take a very important role in the stability of Hamiltonian systems.
  • loading
  • [1]
    Vishik M I,Lyusternik L A.Solution of some perturbation problems in the case of matrices and selfadjoint or non-self-adjoint equations[J].Russian Mathematical Surveys,1960,15(3):1-73.
    [2]
    Lancaster P.On eigenvalues of matrices depending on a parameter[J].Numer Math,1964,10(4):377-387.
    [3]
    Sun J G.Eigenvalues and eigenvectors of a matrix dependent on a parameter[J].J Comput Math,1985,3(3):351-364.
    [4]
    Anord V L.Geometrical Methods in the Theory of Ordinary Differential Equations[M].New York:Springer-Verlag,1983.
    [5]
    Seyranian A P.Sensitivity analysis of multiple eigenvalues[J].Mech Struct & Mach,1993,21(2):261-284.
    [6]
    Pedersen P,Seyranian A P.Sensitivity analysis of problems of dynamic stability[J].Int J Solids Structures,1983,19(4):315-335.
    [7]
    Yakubovitch V A,Strzhinskii V M.Parametric Resonance in Linear Systems[M].Moscow:Nauka,1987.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2423) PDF downloads(883) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return