DANG Fa-ning, RONG Ting-yu, SUN Xun-fang. Splitting Modulus Finite Element Method for Orthogonal Anisotropic Plate Bending[J]. Applied Mathematics and Mechanics, 2001, 22(9): 943-951.
Citation: DANG Fa-ning, RONG Ting-yu, SUN Xun-fang. Splitting Modulus Finite Element Method for Orthogonal Anisotropic Plate Bending[J]. Applied Mathematics and Mechanics, 2001, 22(9): 943-951.

Splitting Modulus Finite Element Method for Orthogonal Anisotropic Plate Bending

  • Received Date: 2000-02-28
  • Rev Recd Date: 2001-03-23
  • Publish Date: 2001-09-15
  • Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors, so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some ill-conditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.
  • loading
  • [1]
    Clough R W. The finite element method in plane stress analysis[J]. Pro Amer Soc Civil Eng,1960,87:345-378.
    [2]
    Argyris J H. Energy Theorems and Structural Analysis[M]. Butterworth,1960.
    [3]
    Turner M J, Clough R W, Martin H G, et al. Stiffness and deflection analysis of complex structures[J]. J Aero Sci,1956,23:805-823.
    [4]
    Fraeijs de Veubeke B. Displacement and equilibrium models in the finite element method[A]. In: Zienkiewicz O C, Holister G S Eds.Stress Analysis[C]. London: John Wiley and Sons Ltd. 1965,145-197.
    [5]
    Pian T H H. Derivation of element stiffness matrices[J]. AIAA J,1964,2:576-577.
    [6]
    Pian T H H. Derivation of element stiffness matrices by assumed stress distributions[J]. AIAA J,1964,2:1333-1336.
    [7]
    Herrmann L R. A bending analysis for plates[A]. In: 1st Conf Matrix Methods in Structural Mechanics[C]. Ohio: Wright-Patterson Air Force Base,1965,577-604.
    [8]
    Pan Y S, Chen D P. Formulation of hybrid/mixed plate bending element with splitting and partialy compatible displacements[A]. In: Proc of International Conf on Computational Engineering Mechanics[C],Beijing:1987,37-42.
    [9]
    Fraeijs de Veubeke B. Upper and lower bounds in matrix structural analysis[A]. In: Fraeijs de Veubeke B Ed. Matrix Methods of Structural Analysis[C]. New York: MacMillian,1964,1:165-201.
    [10]
    Sander P G. Bormes superieures et inferieures dans 1'analyse matricielle des plaques en flexion-torsion[J]. Bull Soc Royale Seiences Liege,1964,33(7):456-494.
    [11]
    荣廷玉. 弹性力学广义混合变分原理及有限元广义混合法[A]. 见:四川省力学学会及重庆市力学学会第一届计算力学学术论文报告会论文集[C]. 第一集,1983,1-13.
    [12]
    RONG Ting-yu. Generalized mixed variational principles and new FEM models in solid mechanics[J]. Int J Solid Structures,1988,24(1):1131-1140.
    [13]
    Zienkiwicz O C. The Finite Element Method in Engineering Science[M]. McGraw-Hill Book Company,1971.
    [14]
    Leknitskii S G. Anisotropic Plates[M]. London: Gordon & Breach,1968.
    [15]
    Timoshenko S, Woinowsky-Kreger S. Theory of Plates & Shells[M]. New York: McGraw-Hill Book Company,1959.
    [16]
    徐次达,华伯浩. 固体力学有限元理论、方法及程序[M]. 北京:水利电力学院,1983.
    [17]
    党发宁. 有限元广义混合法及其在克服有限元病态问题研究中的应用[D]. 成都:西南交通大学博士学位论文,1998,1:54-74.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1999) PDF downloads(656) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return