Citation: | PU Zhi-lin, XU Dao-yi. Global Attractivity and Global Exponential Stability for Delayed Hopfield Neural Network Models[J]. Applied Mathematics and Mechanics, 2001, 22(6): 633-638. |
[1] |
Hopfield J J. Neurons with graded response have collective computational properties like those of two-stage neurons[J]. Proc Nat Acad Sci,1984,81(10):3088-3092.
|
[2] |
张立明. 人工神经网络的模型及其应用[M]. 上海:复旦大学出版社,1993.
|
[3] |
Goplasam K, He X. Stability in asymmetric hopfield nets with transmission delays[J]. Phys D,1994,76(4):344-358.
|
[4] |
Makucus C M, Westervelt R M. Stability of analog neural networks with asymmetric connection weights[J]. Phys Rev A,1989,39(1):347-359.
|
[5] |
Tank D, Hopfield J J. Simple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming network [J]. IE EE Trans Circuits Systems,1986,33(5):533-541.
|
[6] |
Van Den Driessche P, Zou X. Global attractivity in delayed hopfield neural networks models[J]. SIAM J Appl Math,1998,58(6) :1878-1890.
|
[7] |
Matsuoka K. Stability conditions for nonlinear continuous networks with asymmetric connection weights[J]. Netural Neworks,1992,5(3):495-500.
|
[8] |
梁学斌,吴立德. Hopfield型神经网络的全局指数稳定性及其应用[J]. 中国科学(A辑),1995,25(5):523-532.
|
[9] |
梁学斌,吴立德. 关于Hopfield型神经网络的全局指数稳定性[J]. 科学通报,1996,41(15):1434-1438.
|
[10] |
Morita M. Associative memory with non-monotone dynamics[J]. Neural Networks,1993,6(1):115-126.
|