Citation: | FAN En-gui, ZHANG Hong-qing. A New Completely Integrable Liouville’s System, Its Lax Representation and Bi-Hamiltonian Structure[J]. Applied Mathematics and Mechanics, 2001, 22(5): 458-464. |
[1] |
TU Gui-zhang.The trace identity,a powerful tool for constructing the Hamiltonian structure of integrable systems[J].J Math Phys,1989,30(2):330-338.
|
[2] |
TU Gui-zhang.On Liouville integrability of zero-curvature equations and the Yang hierarchy[J].J Phys A:Math Gen,1989,22(13):2375-2392.
|
[3] |
TU Gui-zhang.A trace identity and its applications to the theory of discrete integrable systems[J].J Phys A:Math Gen,1990,23(17):3903-3922.
|
[4] |
CAO Ce-wen.AKNS族的Lax方程组的非线性化[J].中国科学 A,1990,33(3):528-536.
|
[5] |
CAO Ce-wen,GENG Xian-guo.Classical integrable systems generated through nonlinearization of eigenvalue problems[Z].In:C H Gu Ed.Research Reports in Physics[R].Berlin:Springer-Verlag,1990,68-78.
|
[6] |
CAO Ce-wen,GENG Xian-guo.C neumann and bargmann systems associated with the coupled KdV soliton hierarch[J].J Phys A:Math Gen,1990,23(18):4117-4125.
|
[7] |
GENG Xiang-guo.A hierarchy of nonlinear evolution equation,its Hamiltonian structure and classical integrable systems[J].Physica A,1992,180(1~2):241-251.
|
[8] |
QIAO Zhi-jun.A new completely integrable Liouville's system produced by the Kaup-Newell eigenvalue problem[J].J Math Phys,1993,34(7):3100-3121.
|
[9] |
ZENG Yun-bo.An approach to the deduction of the finite-dimensional integrability form the infinite-dimensional integrability[J].Phys Lett A,1991,160(6):541-547.
|