MA Run-nian, XU Jin, GAO Hang-shan. [0,ki]1m-Factorizations Orthogonal to a Subgraph[J]. Applied Mathematics and Mechanics, 2001, 22(5): 525-528.
Citation:
MA Run-nian, XU Jin, GAO Hang-shan. [0,k i ]1 m -Factorizations Orthogonal to a Subgraph[J]. Applied Mathematics and Mechanics, 2001, 22(5): 525-528.
MA Run-nian, XU Jin, GAO Hang-shan. [0,ki]1m-Factorizations Orthogonal to a Subgraph[J]. Applied Mathematics and Mechanics, 2001, 22(5): 525-528.
Citation:
MA Run-nian, XU Jin, GAO Hang-shan. [0,k i ]1 m -Factorizations Orthogonal to a Subgraph[J]. Applied Mathematics and Mechanics, 2001, 22(5): 525-528.
[0,k i ]1 m -Factorizations Orthogonal to a Subgraph
1.
Electronic Engineering Research Institute, Xidian University, Xi'an 710071, P R China;
2.
Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, P R China
Received Date: 1999-11-05
Rev Recd Date:
2000-12-13
Publish Date:
2001-05-15
Abstract
Let G be a graph,k1 ,…,k m be positive integers.If the edges of graph G can be decom- posed into some edge disjoint [0,k1 ]-factor F1 …,[0,k m ]-factor F m then we can say F ={F 1 ,…,F m },is a [0,k i ]1 m -factorization of G .If H is a subgraph with m edges in graph G and |E (H )∩E (F i )|=1 for all 1≤i≤m,then we can call that F is orthogonal to H .It is proved that if G is a[0,k 1 +… +k m -m+1]-graph,H is a subgraph with m edges in G ,then graph G has a [0,k i ]1 m -factorization orthogonal to H .
References
[1]
Bondy J A,Murty U S R.Graph Theory with Application[M].London:Macmillan,1976.
[2]
Akiyama J,Kano M.Factors and factorizations of graphs-a survey[J].Journal of Graph Theory,1985,9(1):1-42.
[3]
刘桂真.与星正交的(g,f)-因子分解[J].中国科学(A辑),1995,25(4):367-373.
[4]
马润年.与树正交的[0,ki ] m 1 -因子分解[J].西安电子科技大学学报,1996,23(图论专辑):66-69.
[5]
MA Run-nian,BAI Guo-qiang.On orthogonal[0,ki ]m 1 -factorizations of graphs[J].Acta Mathematica Scientia,1998,18(4):114-118.
[6]
高安喜,马润年.图的正交因子分解[J].陕西师范大学学报(自然科学版),1999,22(2):20-22.
[7]
马润年,高行山.关于图的(g,f)-因子分解[J].应用数学和力学,1997,18(4):381-386.
Proportional views