Citation: | ZHANG Rong-ye. Dynamics in Newtonian-Riemannian Space-Time (Ⅱ)[J]. Applied Mathematics and Mechanics, 2001, 22(4): 373-381. |
[1] |
Dubruvin B A, Fomenko A T, Novikov S P, Modern Geometry-Methods and Application,Part Ⅰ[M]. New York: Springer-Verlag,New York Inc,1984,1-310.
|
[2] |
von Westenholz C. Differential Forms in Mathematical Physics[M]. Amsterdam, New York,Oxford: North-Holland Publishing Company,1978,198-207.
|
[3] |
Boothby W M. An Introduction to Differentiable Manifold and Riemannian Geometry[M]. New York: Academic Press Inc (London) Ltd,1975,293-331.
|
[4] |
Curtis W D, Miller F R. Differential Manifolds and Theoretical Physics[M]. Orlando, Florida: Academic Press Inc (London) Ltd,1985,213-217.
|
[5] |
Weinberg S. Gravitation and Cosmology[M]. New York: John Wiley & Sons Inc,1972,1-169.
|
[6] |
Schultz B F. Geometrical Methods of Mathematical Physics[M]. Bath Cambridge: Cambridge University Press,1980,201-219.
|
[7] |
Eisenhart L P. An Introduction to Differential Geometry[M]. Princeton: Princeton University Press,1947,1-205.
|
[1] | SI Xin-hui, ZHENG Lian-cun, ZHANG Xin-xin, SI Xin-yi. Flow of a Micropolar Fluid Between Two Orthogonally Moving Porous Disks[J]. Applied Mathematics and Mechanics, 2012, 33(8): 907-918. doi: 10.3879/j.issn.1000-0887.2012.08.001 |
[2] | GONG Sheng-ping, LI Jun-feng, BAOYIN He-xi, GAO Yun-feng. Lunar Landing Trajectory Design Based on Invariant Manifold[J]. Applied Mathematics and Mechanics, 2007, 28(2): 183-190. |
[3] | ZHANG Rong-ye. Hamiltonian Mechanics on K3/4hler Manifolds[J]. Applied Mathematics and Mechanics, 2006, 27(3): 316-324. |
[4] | LUO Shao-ming, ZHANG Xiang-wei, LÜ Wen-ge, JIANG Dong-ru. Theoretical Study of Three-Dimensional Numerical Manifold Method[J]. Applied Mathematics and Mechanics, 2005, 26(9): 1027-1032. |
[5] | ZHANG Rong-ye. Lagrangian Mechanics on K hler Manifolds[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1236-1246. |
[6] | LUO Shao-kai. Form Invariance and Noether Symmetrical Conserved Quantity of Relativistic Birkhoffian Systems[J]. Applied Mathematics and Mechanics, 2003, 24(4): 414-422. |
[7] | HOU Yan-ren, LI Kai-tai. IMD Based Nonlinear Galerkin Method[J]. Applied Mathematics and Mechanics, 2003, 24(3): 289-299. |
[8] | LUO Shao-ming, ZHANG Xiang-wei, CAI Yong-chang. The Variational Principle and Application of Numerical Manifold Method[J]. Applied Mathematics and Mechanics, 2001, 22(6): 587-592. |
[9] | ZHANG Rong-ye. Dynamics in Newtonian-Riemannian Space-Time(Ⅲ)[J]. Applied Mathematics and Mechanics, 2001, 22(4): 382-392. |
[10] | ZHANG Rong-ye. Dynamics in Newtonian-Riemannian Space-Time(Ⅳ)[J]. Applied Mathematics and Mechanics, 2001, 22(4): 393-403. |
[11] | YANG Liu. The Invariant Manifold Method and the Controllability of Nonlinear Control System[J]. Applied Mathematics and Mechanics, 2000, 21(11): 1191-1200. |
[12] | Zhang Rongye. Dynamics in Newtonian-Riemannian Spacetime(Ⅰ)[J]. Applied Mathematics and Mechanics, 2000, 21(7): 746-754. |
[13] | Wang Zongxing, Fan Xianling, Zhu Zhengyou. Convergent Families of Approximate Inertial Manifolds for Nonautonomous Evolution Equations[J]. Applied Mathematics and Mechanics, 1998, 19(8): 715-724. |
[14] | Zhao Guojing, Wei Jianguo. Invariant Sub-Manifolds and Modes of Nonlinear Autonomous Systems[J]. Applied Mathematics and Mechanics, 1998, 19(7): 641-647. |
[15] | Zhang Rongye. Lagrangian Vector Field on Kahler Manifold[J]. Applied Mathematics and Mechanics, 1996, 17(9): 849-855. |
[16] | Cat Rizeng, Xu Zhenyuan. Approximate Inertial Manifolds for the System of the J-J Equations[J]. Applied Mathematics and Mechanics, 1996, 17(4): 327-334. |
[17] | Zhang Rongye. Newtonian Mechanics on Kähler Manifold[J]. Applied Mathematics and Mechanics, 1996, 17(8): 709-719. |
[18] | Chin Yuanxun. Relativistic Absoluteness of Time-Space-Moving Mass[J]. Applied Mathematics and Mechanics, 1995, 16(7): 573-576. |
[19] | Zhang Ji-ye, Shu Zhong-zhou. Necessary and Sufficient Criteria for Absolute Stability of the Direct Control System[J]. Applied Mathematics and Mechanics, 1994, 15(3): 245-251. |
[20] | Liang Tian-lin, Zhou Ling-yun. Principle of Equal Effects of General Relativity and Invariance of Classical Mechanics Equations[J]. Applied Mathematics and Mechanics, 1993, 14(4): 343-347. |