XU Sheng-li, YUE Peng-tao, HAN Zhao-yuan. Study on the Fuel Air Mixing Induced by a Shock Wave Propagating Into a H2-Air Interface[J]. Applied Mathematics and Mechanics, 2001, 22(4): 404-410.
Citation: XU Sheng-li, YUE Peng-tao, HAN Zhao-yuan. Study on the Fuel Air Mixing Induced by a Shock Wave Propagating Into a H2-Air Interface[J]. Applied Mathematics and Mechanics, 2001, 22(4): 404-410.

Study on the Fuel Air Mixing Induced by a Shock Wave Propagating Into a H2-Air Interface

  • Received Date: 1999-04-16
  • Rev Recd Date: 1999-08-02
  • Publish Date: 2001-04-15
  • 2nd order upwind TVD scheme was used to solve the laminar,fully Navier-Stokes equations.The numerical simulations were done on the propagation of a shock wave with MaS=2 and 4 into a hydrogen and air mixture in a duct and a duct with a rearward step.The results indicate that a swirling vortex may be generated in the lopsided interface behind the moving shock.Meanwhile,the complex shock system is also formed in this shear flow region.A large swirling vortex is produced and the fuel mixing can be enhanced by a shock wave at low Mach number.But in a duct with a rearward step,the shock almost disappears in hydrogen for MaS=2.The shock in hydrogen will become strong if MaS is large.Similar to the condition of a shock moving in a duct full of hydrogen and air,a large vortex can be formed in the shear flow region.The large swirling vortex even gets through the reflected shock and impacts on the lower wall.Then,the distribution of hydrogen behind the rearward step is divided into two regions.The transition from regular reflection to Mach reflection was observed as well in case MaS=4.
  • loading
  • [1]
    Drummond J P,Hussaini.Numerical simulation of a supersonic reacting mixing layer[A].AIAA Paper, 87-1325,1987.
    [2]
    Roshko A.Structure of the turbulent shear flow:New look[J]. AIAA J,1976,14(10):1349.
    [3]
    Guiguis R H, Grinstein F F,Young T R, et al. Mixing enhancement in supersonic shear layers[A]. AIAA Paper,87-0373,1987.
    [4]
    刘君,高树椿.超声速自由剪切流动的数值模拟和理论分析[J].空气动力学学报,1995,13(2):152-158.
    [5]
    Yee H C, Klopeer G H, Montagne J L. High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows[J].J Comput Phys,1990,88:31-61.
    [6]
    Gordon S,McBride D J.Computer program for a calculation of complex chemical equilibrium compositions,rockets performance,incident and reflected shocks,Chapman-Joudguet detonations[A]. NASA SP-273,1971.
    [7]
    Eklund D R,Stouffer S D. A numerical and experimental study of a supersonic combustor employing swept ramp fuel injectors[A].AIAA Paper 94-2819,1994.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2253) PDF downloads(642) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return