Citation: | CHENG Chang-jun, ZHANG Neng-hui. Dynamical Behavior of Viscoelastic Cylindrical Shells Under Axial Pressures[J]. Applied Mathematics and Mechanics, 2001, 22(1): 1-8. |
[1] |
Potapov V D. Stability of compressed viscolelastic orthotropic shells[J]. J Appl Mech and Tech Phy,1978,18(4):586-592.
|
[2] |
Minakova N I, Timakov V N. Axisymmetric stability of piecewise homogeneous viscoelastic shell acted on by the time-dependent uniform external pres sure[J]. Mech Solids,1978,13(1):134-138.
|
[3] |
Drozdov A D. Stability of viscoelastic shells under periodic and stochastic loading[J]. Mech Res Commun,1993,20(6):481-486.
|
[4] |
Brotskaya V Y, Milanovich O A, Minakova N I. Mathematical modeling of stability of a visco elastic shell with nonequal curvatures[J]. Mech Solids,1995,30(4):139-145.
|
[5] |
DING Rui. The dynamical analysis of viscoelastic structures[D]. Ph D Thesis. Lanzhou: Lanzhou University,1997.
|
[6] |
程昌钧,朱正佑. 结构的屈曲与分叉[M]. 兰州:兰州大学出版社,1991.
|
[7] |
CHENG Chang-jun, ZHANG Neng-hui. Variational principles on static-dynamic analysis of viscoelastic thin plates with applications[J]. Int J Solids Struct,1998,35(33):4491-4505.
|
[8] |
ZHANG Neng-hui, CHENG Chang-jun. Non-linear mathematical model of viscoelastic thin plates with its applications[J]. Comput Methods Appl Mech Engng,1998,165(4):307-319.
|
[9] |
程昌钧,张能辉. 粘弹性矩形板的混沌和超混沌[J]. 力学学报,1998, 30(6):690-699.
|
[10] |
徐芝纶. 弹性理论[M]. 北京:高等教育出版社,1988.
|
[11] |
Shimada I, Nagashima T. A numerical approach to ergodic problem of dissipative systems[J]. Prog Theor Phys,1979,61(12):1605-1615.
|
[12] |
Kubicek M, Marek M. Computational Methods in Bifurcation Theory and Dissipative Structures[M]. New York: Springer-Verlag,1983.
|