ZHANG Yin-ke, HUANG Yi. The Non-Axisymmetrical Dynamic Response of Transversely Isotropic Saturated Poroelastic Media[J]. Applied Mathematics and Mechanics, 2001, 22(1): 56-70.
Citation: ZHANG Yin-ke, HUANG Yi. The Non-Axisymmetrical Dynamic Response of Transversely Isotropic Saturated Poroelastic Media[J]. Applied Mathematics and Mechanics, 2001, 22(1): 56-70.

The Non-Axisymmetrical Dynamic Response of Transversely Isotropic Saturated Poroelastic Media

  • Received Date: 2000-01-28
  • Rev Recd Date: 2000-09-30
  • Publish Date: 2001-01-15
  • The Biot's wave equations of transversely isotropic saturated poroelastic media excited by non-axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform.Then the components of total stress in porous media are expressed with the solutions of Biot's wave equations.The method of research on non-axisymmetrical dynamic response of saturated porous media is discussed,and a numerical result is presented.
  • loading
  • [1]
    Biot M A. The theory of propagation of elastic waves in a fluid-saturated porous solid[J]. J Acoust Soc Am,1956,28(2):168-191.
    [2]
    Biot M A. General theory of acoustic propagation in porous dissipative media[J]. J Acoust Soc Am,1962,34(9):1254-1264.
    [3]
    Biot M A. Mechanics of deformation and acoustic propagation in porous media[J]. J Appl Phys,1962,33(4):1482-1498.
    [4]
    Zienkiewicz O C, Shiomi T. Dynamic behavior of saturated porous media, the general Biot formulation and its numerical solution[J]. Int J Numer and Analytical Methods in Geomech,1984,8(1):71-96.
    [5]
    Bougacha S, Tassoulas J L, Roesset J M. Analysis of foundations on fluid-filled poroelastic stratum[J]. J Engrg Mech ASCE,1993,119[ STBZ (8):1632-1648.
    [6]
    Bougacha S, Roesset J M, Tassoulas J L. Dynamic stiffness of foundations on fluid-filled poroelastic stratum[J]. J Engrg Mech ASCE,1993,119(8):1649-1662.
    [7]
    Cheng A H-D, Badmus J, Beskos D E. Integral equations for dynamic poroelasticity in frequency domain with BEM solution[J]. J Engrg Mech, ASCE,1991,117(5):1136-1157.
    [8]
    Dominguez J. Boundary elementary approach for dynamic poro elastic problems[J]. Int J Numer Methods in Engrg,1992,35(2):307-324.
    [9]
    Chen J, Dargush G F. Boundary element method for dynamic p oroelastic and thermoelastic analysis[J]. Int Solids and Struct,1995,32(15):2257-2278.
    [10]
    Dargush G F, Chopra M B. Dynamic analysis of axisymmetrical foundation on poroelastic media[J]. J Engrg Mech,1996,122(7):623-632.
    [11]
    Philippacopoulous A J. Waves in partially saturated medium due to surface loads[J]. J Engrg Mech,1988,114(10):1740-1759.
    [12]
    张玉红. 饱和土地基与基础结构动力相互作用[D]. 博士学位论文. 西安:西安建筑科技大学,1999.
    [13]
    Sneddon I N,富里叶变换[M]. 何衍璿,张燮 译.北京:科学出版社,1958.
    [14]
    Kazi-Aoual M N, Bonnet G, Jouanna P. Green's functions in an infinite transversely isotropic saturated poroelastic medium[J]. J Acoust Soc Am,1988,84(5):1883-1889.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2597) PDF downloads(699) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return