ZHANG Yao-ming, SUN Huan-chun, YANG Jia-xin. Equivalent Boundary Integral Equations With Indirect Unknowns for Thin Elastic Plate Bending Theory[J]. Applied Mathematics and Mechanics, 2000, 21(11): 1125-1132.
Citation: ZHANG Yao-ming, SUN Huan-chun, YANG Jia-xin. Equivalent Boundary Integral Equations With Indirect Unknowns for Thin Elastic Plate Bending Theory[J]. Applied Mathematics and Mechanics, 2000, 21(11): 1125-1132.

Equivalent Boundary Integral Equations With Indirect Unknowns for Thin Elastic Plate Bending Theory

  • Received Date: 1999-05-28
  • Rev Recd Date: 2000-06-18
  • Publish Date: 2000-11-15
  • Equivalent Boundary Integral Equations(EBIE) with indirect unknowns for thin elastic plate bending theory,which is equivalent to the o riginal boundary value problem,is established rigoro usly by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle.The previous three kinds of boundary integral equations with indirect unknown sare discussed thoroughly and it is shown that all previousre sultsare not EBIE.
  • loading
  • [1]
    Jawson M A,Symm G T.Integral Equation Methods in Potential and Elastics[M].Londo n:Academic Press,1977.
    [2]
    Hartman F.Introduction to Boun dary Element:Theory and Applications[M].Berlin:Springer-Verlag,1989.
    [3]
    Giranlt V,Raviart P A.Finite Element Approx imation of the Navier-Stokes Equations[M].Berlin:Springer-Verlag,1986.
    [4]
    张耀明.充要的无奇异边界积分方程[D].博士学位论文.大连:大连理工大学,1996.
    [5]
    孙焕纯,张耀明.无奇异边界元法[M].大连:大连理工大学出版社,1999.
    [6]
    Venturini W S,Paiva J B.Boundary element for plate bending analysis[J].Eng Anal Boun dary Element,1993,11(2):1-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2297) PDF downloads(768) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return