DING Deng. A Note on Stochastic Optimal Control of Reflected Diffusions With Jumps[J]. Applied Mathematics and Mechanics, 2000, 21(9): 973-983.
Citation:
DING Deng. A Note on Stochastic Optimal Control of Reflected Diffusions With Jumps[J]. Applied Mathematics and Mechanics, 2000, 21(9): 973-983.
DING Deng. A Note on Stochastic Optimal Control of Reflected Diffusions With Jumps[J]. Applied Mathematics and Mechanics, 2000, 21(9): 973-983.
Citation:
DING Deng. A Note on Stochastic Optimal Control of Reflected Diffusions With Jumps[J]. Applied Mathematics and Mechanics, 2000, 21(9): 973-983.
A Note on Stochastic Optimal Control of Reflected Diffusions With Jumps
1.
Department of Mathematics, Zhongshan University, Guangzhou 510725, P R China;
2.
Faculty of Science and Technology, University of Macau, P O Box 3001. Macau, P R China
Received Date: 1999-04-06
Rev Recd Date:
2000-04-16
Publish Date:
2000-09-15
Abstract
Stochastic optimal control problems for a class of reflected diffusion with Poisson jumps in a half-space are considered.The nonlinear Nisio.s semigro up for such optimal control problems was constructed.A Hamilton-Jaco bi-Bellman equation with the Ne umann boundary condition associated with this semigroup was o btained.Then,visco sity solutions of this equation were defined and discussed,and various uniqueness of this equation was also considered.Finally,the value function in such optimal control problems is shown to be a viscosity solution of this equation.
References
[1]
Lions P L. Optimal control of reflected diffusion processes[J]. Lect Notes in Control and Inf Sci,1983,61:157-163.
[2]
Menaldi J L, Robin M. construction and control of reflected diffusion with jumps[J]. Lect Notes in Control and Inf Sci,1983,69:309-322.
[3]
Maurel M C, Karoui N E, Marchal B. Reflexiom discontinue et systemes stochastiques[J]. Ann Probab,1980,8(3):1047-1067.
[4]
丁灯. 关于带跳反射扩散过程的下鞅问题及其应用[J]. 中山大学学报(自然科学版),1995,34(2):7-13.
[5]
Lions P L, Menaldi J L. Optimal control of stochastic integrals and Hamilton-Jacobi-Bellman equations, Parts 1 and 2[J]. SIAM J Control Optim,1980,20(1):58-95.
[6]
Krylov N V. Controlled Diffusion Processes[M]. Berlin: Springer,1985.
[7]
Nisio M. Lectures on Stochastic Control Theory[M]. Macmillan India Limited,1981.
[8]
Ikeda N, Watanabe S. Stochastic Differential Equations and Diffusion Processes[M]. Tokyo: North-Holland Publishing Compang,1981.
[9]
Krylov N V, Pragarauskas H. On the Bellman equations for uniformly non-degenerated general stochastic processes[J]. Liet Matem Rink,1980,20(1):85-95.
Relative Articles
[1] ZHENG Mingliang. The Noether Theorem for Nonlinear Optimal Control Problems of Mechanical Multibody System Dynamics [J]. Applied Mathematics and Mechanics, 2018, 39(7): 776-784. doi: 10.21656/1000-0887.380295
[2] QIN Yan-mei, LI Hui, FENG Min-fu. A Local Stabilized Nonconforming Finite Element Method for the Optimal Control of Navier-Stokes Equations [J]. Applied Mathematics and Mechanics, 2016, 37(8): 842-855. doi: 10.21656/1000-0887.370137
[3] PENG Hai-jun, GAO Qiang, WU Zhi-gang, ZHONG Wan-xie. Symplectic Multi-Level Method for Solving Nonlinear Optimal Control Problem [J]. Applied Mathematics and Mechanics, 2010, 31(10): 1191-1200. doi: 10.3879/j.issn.1000-0887.2010.10.006
[4] Piyanka Dhar, Ranjit Dhar. Optimal Control Problem for Bio-Heat Equation Due to Induced Microwave [J]. Applied Mathematics and Mechanics, 2010, 31(4): 499-504. doi: 10.3879/j.issn.1000-0887.2010.04.012
[5] LI Bo, WU Rong. Dividend Function in the Jump-Diffusion Dual Model With Barrier Dividend Strategy [J]. Applied Mathematics and Mechanics, 2008, 29(9): 1124-1134.
[6] TAN Shu-jun, ZHONG Wan-xie. Numerical Solutions of LQ Control for Time-Varying Systems Via Symplectic Conservative Perturbation [J]. Applied Mathematics and Mechanics, 2007, 28(3): 253-262.
[7] GE Xin-Sheng, CHEN Li-qun. Optimal Control of Nonholonomic Motion Planning for a Free-Falling Cat [J]. Applied Mathematics and Mechanics, 2007, 28(5): 539-545.
[8] SHI Pei-hu, WANG Ming-xin. Self-Similar Singular Solution of Fast Diffusion Equation With Gradient Absorption Terms [J]. Applied Mathematics and Mechanics, 2007, 28(1): 99-106.
[9] GUO Xing-ming, ZHOU Shi-xing. Optimal Control of Parabolic Variational Inequalities With Stat Constraint [J]. Applied Mathematics and Mechanics, 2003, 24(7): 669-674.
[10] QI Zhao-hui, Alexander P. Seyranian. On the Stability Boundary of Hamiltonian Systems [J]. Applied Mathematics and Mechanics, 2002, 23(2): 173-178.
[11] GE Xin-sheng, ZHANG Qi-zhi, LIU Yan-zhu. Based on Wavelet Analysis to Optimal Control of Motion Planning of Space Manipulator [J]. Applied Mathematics and Mechanics, 2000, 21(10): 1046-1052.
[12] ZHONG Wan-xie, CAI Zhi-qin. Precise Integration Method for LQG Optimal Measurement Feedback Control Problem [J]. Applied Mathematics and Mechanics, 2000, 21(12): 1279-1284.
[13] Situ Rong, Wang Yueping. On Solutions of Backward Stochastic Differential Equations With Jumps,With Unbounded Stopping Times as Terminal and With Non-Lipschitz Coefficients,and Probabilistic Interpretationof Quasi-Linear Elliptic TypeIntegro-Differential Equations [J]. Applied Mathematics and Mechanics, 2000, 21(6): 597-609.
[14] Wu Zhigang, Wang Benli, Ma Xingrui. Theory and Method of Optimal Control Solution to Dynamic System Parameters Identification(Ⅰ) Fundamental Concept and Deterministic System Parameters Identification [J]. Applied Mathematics and Mechanics, 1999, 20(2): 127-133.
[15] Wu Zhigang, Wang Benli, Ma Xingrui. Theory and Algorithm of Optimal Control Solution to Dynamic Systme Parameters Identification (Ⅱ) Stochastic System Parameters Identification and Application Example [J]. Applied Mathematics and Mechanics, 1999, 20(3): 229-234.
[16] Jiang Wei, Zheng Zuxiu. The Optimal Control of Delay Control Systems with Restricted State Right Endpoint [J]. Applied Mathematics and Mechanics, 1997, 18(9): 813-817.
[17] Tian Gen-bao, Lin Zong-chi. Singularly Perturbed Methods in the Theory of Optimal Control of Systems Governed by Partial Differential Equations [J]. Applied Mathematics and Mechanics, 1994, 15(8): 679-684.
[18] Zhong Wan-xie. Plane Elasticity Sectorial Donain and the Hamiltonian System [J]. Applied Mathematics and Mechanics, 1994, 15(12): 1057-1066.
[19] Q. K. Ckori, Naseer Ahmed. Applicability of Hamilton-Jacobi Method to Nonlinear Nonholonomic Systems [J]. Applied Mathematics and Mechanics, 1988, 9(10): 879-892.
[20] Peng Shi-ge, Chen Zu-hao. The Existence Problem of Optimal Control for Nonlinear Processes [J]. Applied Mathematics and Mechanics, 1983, 4(6): 809-820.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 14.2 % FULLTEXT : 14.2 % META : 85.1 % META : 85.1 % PDF : 0.7 % PDF : 0.7 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 8.9 % 其他 : 8.9 % 其他 : 0.1 % 其他 : 0.1 % China : 0.7 % China : 0.7 % Singapore : 0.1 % Singapore : 0.1 % Ulu Bedok : 0.1 % Ulu Bedok : 0.1 % United States : 0.1 % United States : 0.1 % [] : 0.1 % [] : 0.1 % 上海 : 0.4 % 上海 : 0.4 % 乌鲁木齐 : 0.1 % 乌鲁木齐 : 0.1 % 佛山 : 0.1 % 佛山 : 0.1 % 北京 : 1.2 % 北京 : 1.2 % 南京 : 0.8 % 南京 : 0.8 % 南宁 : 0.1 % 南宁 : 0.1 % 哥伦布 : 0.1 % 哥伦布 : 0.1 % 唐山 : 0.1 % 唐山 : 0.1 % 宁波 : 0.1 % 宁波 : 0.1 % 宜春 : 0.1 % 宜春 : 0.1 % 广州 : 0.2 % 广州 : 0.2 % 张家口 : 1.6 % 张家口 : 1.6 % 扬州 : 0.1 % 扬州 : 0.1 % 日照 : 0.1 % 日照 : 0.1 % 杭州 : 0.1 % 杭州 : 0.1 % 武汉 : 0.1 % 武汉 : 0.1 % 江门 : 0.1 % 江门 : 0.1 % 泉州 : 0.1 % 泉州 : 0.1 % 济南 : 0.1 % 济南 : 0.1 % 深圳 : 0.2 % 深圳 : 0.2 % 漯河 : 0.1 % 漯河 : 0.1 % 澳门 : 0.1 % 澳门 : 0.1 % 石家庄 : 0.4 % 石家庄 : 0.4 % 芒廷维尤 : 4.1 % 芒廷维尤 : 4.1 % 芝加哥 : 0.3 % 芝加哥 : 0.3 % 苏州 : 0.1 % 苏州 : 0.1 % 蚌埠 : 0.2 % 蚌埠 : 0.2 % 西宁 : 78.2 % 西宁 : 78.2 % 西安 : 0.1 % 西安 : 0.1 % 郑州 : 0.4 % 郑州 : 0.4 % 其他 其他 China Singapore Ulu Bedok United States [] 上海 乌鲁木齐 佛山 北京 南京 南宁 哥伦布 唐山 宁波 宜春 广州 张家口 扬州 日照 杭州 武汉 江门 泉州 济南 深圳 漯河 澳门 石家庄 芒廷维尤 芝加哥 苏州 蚌埠 西宁 西安 郑州