ZHANG Xiang-wei, LIN Yi. The Dimension of Spline Space S31(Δ) on a Type of Triangulation[J]. Applied Mathematics and Mechanics, 2000, 21(8): 783-791.
Citation:
ZHANG Xiang-wei, LIN Yi. The Dimension of Spline Space S3 1 (Δ) on a Type of Triangulation[J]. Applied Mathematics and Mechanics, 2000, 21(8): 783-791.
ZHANG Xiang-wei, LIN Yi. The Dimension of Spline Space S31(Δ) on a Type of Triangulation[J]. Applied Mathematics and Mechanics, 2000, 21(8): 783-791.
Citation:
ZHANG Xiang-wei, LIN Yi. The Dimension of Spline Space S3 1 (Δ) on a Type of Triangulation[J]. Applied Mathematics and Mechanics, 2000, 21(8): 783-791.
The Dimension of Spline Space S3 1 (Δ) on a Type of Triangulation
1.
Shantou University, Shantou, Guangdong 515063, P R China;
2.
Wuxi University of Light Industry, Wuxi 214036, P R China
Received Date: 1999-06-26
Rev Recd Date:
2000-04-25
Publish Date:
2000-08-15
Abstract
A harmonic condition that can distinguish whether the dimension of spline space S3 1 (Δ) depends on the geometrical character of triangulation is presented, then on a type of general triangulation the dimension is got.
References
[1]
郭竹端,贾荣庆.多元样条研究中的B网方法[J].数学进展,1990,19(2);189-198.
[2]
刘焕文.二元样条的积分表示及分层三角剖分下二次样条空间的维数[J].数学学报,1994,37(4);534-543.
[3]
Schumaker L L.In:Schemp W, Zeller K Eds.Multivariate Approximation Theory[C].Boston:Birkhouse Verlag, 1979,396-412.
Proportional views