Gan Hong. Numerical Analysis of theLarge Deflection of an Elastic-Plastic Beam[J]. Applied Mathematics and Mechanics, 2000, 21(6): 633-639.
Citation: Gan Hong. Numerical Analysis of theLarge Deflection of an Elastic-Plastic Beam[J]. Applied Mathematics and Mechanics, 2000, 21(6): 633-639.

Numerical Analysis of theLarge Deflection of an Elastic-Plastic Beam

  • Received Date: 1999-04-23
  • Rev Recd Date: 2000-02-10
  • Publish Date: 2000-06-15
  • The layered approach was adopted to study the numerical procedure of the large deflection of an elastic-plastic Timoshenko's beam,and the nonlinear equilibrium equation was derived by TL Formula.The solution was conducted by means of mNR method.The tangential stiffness matrix of the beam was introduced,and the solving procedures were presented in detail.The solution of the problem is satisfactory.
  • loading
  • [1]
    Frish-Fay R.Flexible Bars[M].Washington,D C:Butterworth,1962.
    [2]
    Wang C Y,Watson L T.On the large deformations of C-shaped springs[J].Int J Mech Sci,1980,22(7):395~400.
    [3]
    Wang C Y.Folding of elastica,similarity solutions[J].J Appl Mech,1981,48(1):199~200.
    [4]
    Wang C Y,Watson L T.The elastic catenary[J].Int J Mech Sci,1982,24(6):349~357.
    [5]
    朱菊芬,周承芳,吕和祥.一般杆系结构的非线性数值分析[J].应用数学和力学,1987,8(12):1099~1109.
    [6]
    刘正兴.基于增量变分原理的柔性梁与柔韧板单元[J].计算结构力学及其应用,1984,1(4):49~59.
    [7]
    干洪,张伟林.柔性梁的非线性有限元数值分析[J].安徽建筑工业学院学报,1993,1(2):68~73.
    [8]
    Owen D R J,Hinton E.Finite Elements in Plasticity[M].Swansea U K:Pineridge Press Ltd,1980:121~153.
    [9]
    伍小强,余同希.悬臂梁弹塑性大挠度全过程的分析,力学学报,1986,18(6):516~527.
    [10]
    吕和祥,蒋和洋.非线性有限元[M].北京:化学工业出版社,1992,308~327.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3014) PDF downloads(1403) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return