Zhao Yucheng, Yuan Shuqing, Xiao Zhonghui, Xu Qingyu. The Fractional Dimension Identification Method of Critical Bifurcated Parameters of Bearing-Rotor System[J]. Applied Mathematics and Mechanics, 2000, 21(2): 126-130.
Citation: Zhao Yucheng, Yuan Shuqing, Xiao Zhonghui, Xu Qingyu. The Fractional Dimension Identification Method of Critical Bifurcated Parameters of Bearing-Rotor System[J]. Applied Mathematics and Mechanics, 2000, 21(2): 126-130.

The Fractional Dimension Identification Method of Critical Bifurcated Parameters of Bearing-Rotor System

  • Received Date: 1998-11-02
  • Rev Recd Date: 1999-08-13
  • Publish Date: 2000-02-15
  • The stable problem of rotor system,seen in many fields,has been cared for more. Nowadays the reasons of most losing stability are caused by nonlinear behaviors.This presents higher requirements to the designing of motor system:considering nonlinear elements,avoiding the unstable parameter points or regions where nonlinear phenomena will be presented.If a family of time series of the unbeknown nonlinear dynamical system can only be got(may be polluted by noise),how to identify the change of motive properties at different parameters?In this paper through the study of Jeffcott rot or system,the result that using the figures between the fractional dimension of time-serial and parameter can be gained,and the critical bifurcated parameters of bearing-rotor dynamical system can be identified.
  • loading
  • [1]
    郑会永,刘华强,戴冠中.非线性动力系统中的分形、混沌及其应用[J].非线性动力学学报,1996,3(2):182~190.
    [2]
    Barnsley M F.Fractal Everywhere[M].New York:Academic Press Inc,1988.
    [3]
    龚云帆,徐健学.混沌信号与噪声[J].信号处理,1997,13(2):112~118.
    [4]
    龙运佳.混沌振动研究:方向与实践[M].北京:清华大学出版社,1996.
    [5]
    张家忠.挤压油膜阻尼器-滑动轴承-转子动力系统的非线性动力特性研究:运动稳定性及分岔[D].博士论文.西安:西安交通大学,1997.
    [6]
    赵玉成,许庆余.时间序列分维数用于分岔参数的识别[J].西安交通大学学报,1998,32(8):106~107.
    [7]
    刘式达,刘式适.分形和分维引论[M].北京:气象出版社,1992.
    [8]
    郭友中,周焕文.分岔、怪引子、阵发性与混沌[J].力学进展,1984,13(2):255~274.
    [9]
    Grassberger P.Generalized dimensions of strange attractors[J].Physics Letters,1983,97A(7):227~230.
    [10]
    Grassberger P.On the fractal dimension of the Henon attractor[J].Physics Letters,1983,97A(7):224~227.
    [11]
    Parker T S,Chua L.Practical Numerical Algorithms for Chaotic Systems[M].New York:Springer-Verlag,Inc,1992
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2494) PDF downloads(550) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return