Zhao Weijia, Pan Zhenkuan, Wang Yibing. An Automatic Constraint Violation Stabilization Method for Differential/Algebraic Equations of Motion Multibody System Dynamics[J]. Applied Mathematics and Mechanics, 2000, (1): 94-98.
Citation: Zhao Weijia, Pan Zhenkuan, Wang Yibing. An Automatic Constraint Violation Stabilization Method for Differential/Algebraic Equations of Motion Multibody System Dynamics[J]. Applied Mathematics and Mechanics, 2000, (1): 94-98.

An Automatic Constraint Violation Stabilization Method for Differential/Algebraic Equations of Motion Multibody System Dynamics

  • Received Date: 1997-12-21
  • Rev Recd Date: 1999-10-30
  • Publish Date: 2000-01-15
  • A new automatic constraint violation stabilization method for numerical integration of Euler-Lagrange equations of motion in dynamics of multibody systems is presented.The parameters α,β used in the traditional constraint violation stabilization method are determined according to the integration time step size and Taylor expansion method automatically.The direct integration method,the traditional constraint violation stabilization method and the new method presented in this paper are compared finally.
  • loading
  • [1]
    洪嘉振.多体系统计算动力学[Z].上海:上海交大科技交流室,1989.
    [2]
    Wehage R A,Haug EJ.Generalized coordinates partitioning for dimension reduction in analysis ofconstrained dynamic systems[J].ASMEJof Mechanical Design,1982,104.
    [3]
    Singh RP,Likins P W.Singular value decomposition for constrained dynamic systems[J].ASMEJof Applied Mechanics,1985,52.
    [4]
    Kam man J W,Huston R L.Constrained multibody system dynamics—An automated approach[J],Jof Computers and Structures,1984,18(6).
    [5]
    Kim S S,Vanderploeg M J.QR decomposition for state space representation of constrained mechanical dynamic systems[J].ASMEJof Mech Trans and Auto in Design,1986,108.
    [6]
    Liang C G,Lance G M.A differential null space method for constrained dynamic analysis[J].ASME J of Mech Trans and Auto in Design,1987,109.
    [7]
    Nikravesh P E.Computer Aided Analysis of Mechanical Systems[M].Englewood Cliffs,N JPrentice-Hall,1987.
    [8]
    Potra F A,Rheinbolt W C.On the numericalsolution of Euler-Lagrange equations[J].Mechanicsof Structures & Machines,1991,19(1).
    [9]
    Campbell B S,Leimkuhler B.Differentiation of constraintsin differential/algebraic equations[J].Mechanics of Structures & Machines,1991,19(1).
    [10]
    Yen J,Haug EJ,Tak T O.Numerical methods for constrained equations of motion in mechani calsystem dynamics[J].Mechanics of Structures & Machines,1991,19(1).
    [11]
    Petzold L R,Potra F A.ODAE methods for the numerical solution of Eurer-Lagrange equations[J].J of Applied Numerical Mathematics,1992,10.
    [12]
    赵维加,潘振宽,洪嘉振,等.多体系统动力学微分代数方程组的一类紧凑算法[J].青岛大学学报(自然科学版),1995,18(3):22~28.
    [13]
    赵维加,潘振宽,洪嘉振,等.多体系统动力学微分代数方程组的一类缩并算法[J].纺织高校基础科学学报,1995,18(3):234~239.
    [14]
    赵维加,潘振宽,洪嘉振,等.多体系统动力学微分代数方程组数值积分方法[J].力学进展,1996,26(1):28~40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2774) PDF downloads(662) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return