Citation: | Zhao Weijia, Pan Zhenkuan, Wang Yibing. An Automatic Constraint Violation Stabilization Method for Differential/Algebraic Equations of Motion Multibody System Dynamics[J]. Applied Mathematics and Mechanics, 2000, (1): 94-98. |
[1] |
洪嘉振.多体系统计算动力学[Z].上海:上海交大科技交流室,1989.
|
[2] |
Wehage R A,Haug EJ.Generalized coordinates partitioning for dimension reduction in analysis ofconstrained dynamic systems[J].ASMEJof Mechanical Design,1982,104.
|
[3] |
Singh RP,Likins P W.Singular value decomposition for constrained dynamic systems[J].ASMEJof Applied Mechanics,1985,52.
|
[4] |
Kam man J W,Huston R L.Constrained multibody system dynamics—An automated approach[J],Jof Computers and Structures,1984,18(6).
|
[5] |
Kim S S,Vanderploeg M J.QR decomposition for state space representation of constrained mechanical dynamic systems[J].ASMEJof Mech Trans and Auto in Design,1986,108.
|
[6] |
Liang C G,Lance G M.A differential null space method for constrained dynamic analysis[J].ASME J of Mech Trans and Auto in Design,1987,109.
|
[7] |
Nikravesh P E.Computer Aided Analysis of Mechanical Systems[M].Englewood Cliffs,N JPrentice-Hall,1987.
|
[8] |
Potra F A,Rheinbolt W C.On the numericalsolution of Euler-Lagrange equations[J].Mechanicsof Structures & Machines,1991,19(1).
|
[9] |
Campbell B S,Leimkuhler B.Differentiation of constraintsin differential/algebraic equations[J].Mechanics of Structures & Machines,1991,19(1).
|
[10] |
Yen J,Haug EJ,Tak T O.Numerical methods for constrained equations of motion in mechani calsystem dynamics[J].Mechanics of Structures & Machines,1991,19(1).
|
[11] |
Petzold L R,Potra F A.ODAE methods for the numerical solution of Eurer-Lagrange equations[J].J of Applied Numerical Mathematics,1992,10.
|
[12] |
赵维加,潘振宽,洪嘉振,等.多体系统动力学微分代数方程组的一类紧凑算法[J].青岛大学学报(自然科学版),1995,18(3):22~28.
|
[13] |
赵维加,潘振宽,洪嘉振,等.多体系统动力学微分代数方程组的一类缩并算法[J].纺织高校基础科学学报,1995,18(3):234~239.
|
[14] |
赵维加,潘振宽,洪嘉振,等.多体系统动力学微分代数方程组数值积分方法[J].力学进展,1996,26(1):28~40.
|