Jiang Tongsong, Chen Li. Generalized Diagonalization of Matrices Over Quaternion Field[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1203-1210.
Citation: Jiang Tongsong, Chen Li. Generalized Diagonalization of Matrices Over Quaternion Field[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1203-1210.

Generalized Diagonalization of Matrices Over Quaternion Field

  • Received Date: 1998-04-29
  • Rev Recd Date: 1999-06-28
  • Publish Date: 1999-11-15
  • A concept of diagonalization matrix over quaternion field is given, the necessary and sufficient conditions for determining whether a quaternion matrix is a diagonalization one are discussed, and a method of diagonalization of matrices over quaternion field is given.
  • loading
  • [1]
    肖尚彬.四元数矩阵的乘法及其可易性[J].力学学报,1984,16(2):159~166.
    [2]
    王庆贵.四元数变换及其在空间机构位移分析中的应用[J].力学学报,1983,15(1):54~61.
    [3]
    Adler S L.Quaternionic Quantum Mechanics and Quantum Fields[M].New York:Oxford U P,1994.
    [4]
    陈龙玄,侯仁民,王亮涛.四元数矩阵的Jordan标准形[J].应用数学和力学,1996,17(6):533~541.
    [5]
    Nathan Jacobson.Basic Algebra,I[M].San Francisco:W H Freeman and Company,1974,95~97.
    [6]
    Zhang Fuzhen.Quaternions and matrices of quaternions[J].Linear Algebra Appl,1997,251:21~57.
    [7]
    Birkhoff G,Saunders M L.A Survey of Modern Algebra[M].Fourth edition,New York:Macmillan Publishing Co,Inc,1977,150~151.
    [8]
    Stuart J L,Weaver J R.Matrices that commute with a permutation matrix[J].Linear Algebra Appl,1991,150:255~265.
    [9]
    Larry Smith.Linear Algebra[M].New York:Springer-Verlag,1978,208.
    [10]
    Kenneth Hoffmna,Kunze Ray.Linear Algebra[M].Second Edition.Englewood Cliffs,New Jersey:Prentice-Hall,Inc,1991,244~246.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2872) PDF downloads(730) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return