Wang Zhihua. Existence of Solutions for Parabolic Type Evolution Differential Inclusions and the Property of the Solution Set[J]. Applied Mathematics and Mechanics, 1999, 20(3): 314-318.
Citation: Wang Zhihua. Existence of Solutions for Parabolic Type Evolution Differential Inclusions and the Property of the Solution Set[J]. Applied Mathematics and Mechanics, 1999, 20(3): 314-318.

Existence of Solutions for Parabolic Type Evolution Differential Inclusions and the Property of the Solution Set

  • Received Date: 1997-11-22
  • Rev Recd Date: 1998-12-05
  • Publish Date: 1999-03-15
  • In this paper, parabolic type differential inclusions with time dependenoe are discussed and this problem is related to the study of the nonlinear distributed parameter control systems. An existence theorem of mild-solutions is proved, and a property of the solution set is given. The directions and the results by J.P.Aubin et al are generalized and improved.
  • loading
  • [1]
    Aubin J P,Cellina A.Differential Inclusions[M].Berlin:Springer-Verlag,1984.
    [2]
    Frankowska H.Estimations a priori pour les inclusions differentielles operationelles[J].C R Acad Sci Paris,1989,308(5):47~50
    [3]
    Xue X,Song G.Existence results of mild solutions to semilinear evolution inclusions in Banach spaces[J].Northeast Math J,1995,11(7):151~156
    [4]
    Vrabie V V.Some compactness methods in the theory of nonlinear evolution equations to P D E[J].Banach Centre Publ,1987,19(7):351~360
    [5]
    Wagner D.Survey of measurable selection theorems[J].SIAM J Control and Optim,1977,15(3):859~903
    [6]
    周鸿兴,王连文.线性算子半群理论及应用[M].济南:山东科学技术出版社,1994.
    [7]
    Aubin J P,Ekeland I.Applied Nonlinear Analysis[M].New York:Wiley Sons,1984
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1896) PDF downloads(769) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return