Luo Shaokai, Guo Yongxin, Mei Fengxiang. Connections and Geodesic Characteristic of Equations of Motion for Constrained Mechanical Systems[J]. Applied Mathematics and Mechanics, 1998, 19(9): 779-783.
Citation: Luo Shaokai, Guo Yongxin, Mei Fengxiang. Connections and Geodesic Characteristic of Equations of Motion for Constrained Mechanical Systems[J]. Applied Mathematics and Mechanics, 1998, 19(9): 779-783.

Connections and Geodesic Characteristic of Equations of Motion for Constrained Mechanical Systems

  • Received Date: 1997-02-17
  • Publish Date: 1998-09-15
  • The geodesic characteristic of equations of motion for nonautonomous constrained mechanical systems is studied in the modern setting of global differential geometry.A necessary and sufficient condition for the dynamical flow of nonautonomous mechanical system with geodesic characteristic was obtained with respect to a connection on 1-jet bundle.The dynamical flow concerning the non-autonomous case was always of geocesic characteristic with regard to torsionfree connections.Thus the motion of any nonautonomous mechanical system with constraints can be always represented by the motion along the geodesic line of torsion-connection on 1-jet bundle,which is different from the case in an autonomous mechaincal system.
  • loading
  • [1]
    G.Godbillion,Geometrie Differ entielle et Meca nique An alytique,Hermann,Paris (1969).
    [2]
    V.Ⅰ.Arnold,Ma them atical Method of Classical Mechanics,Springer-Verlag,New York (1978).
    [3]
    R.Abraham and J.E.Marsden,Foundations of Mechanics,2nded.,The Benjamin/ Cumming Publishing Company (1978).
    [4]
    梅凤翔、刘端、罗勇,《高等分析力学》,北京理工大学出版社,北京 (1991).
    [5]
    D.Chinea,M.deleon and J.C.Marrero,The constraint algorithm for time-dependent Lagrangians,J.Math.Phys.,35(7) (1994),3410-3438.
    [6]
    E.Cartan,Surles Varietes a connexion affine at la theorie de la relativite generalistee,Annales de L'Ecole Nomale Superieure,40 (1923),325-412.
    [7]
    E.Cartan,Surles Varietes a connexion affine at la theorie de la relativite generalistee,Annales de L'Ecole Nomale Superieure,41 (1924),1-25.M.de leon and P.R.Rodrigues,Methods of Difer ential Geom etry in Analytical Mechanics,North Holland,Amsterdam (1989).
    [8]
    W.Sarlet,A.Vandecasteele and F.Cantrijn,Derivations of forms along a map:the framework for time-dependent second-order equations,Diff.Geom.Appl.,(1995),171-203.
    [9]
    Echeverria-Enriquez,M.C.Munoz-Lecanda and N.Roman-Roy,Non-standard connections in classicalmechanics,J.Phys.A:Math Gen.,2(1995),5553-5567.
    [10]
    G.S.Hall and B.M.Haddow,Geometrical aspects and generalizations of Newton-Cartan mechanics,Int.J.Theor.Phys.,34(7) (1995),1093-1112.
    [11]
    S.Kobayashi and K.Nomizu,Foundations of Differential Geometry,J.Willey and Sons,New York (1963).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2188) PDF downloads(792) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return