Liu Guodong. Higher-Order Multivariable Euler’s Polynomial and Higher-Order Multivariable Bernoulli’s Polynomial[J]. Applied Mathematics and Mechanics, 1998, 19(9): 827-836.
Citation:
Liu Guodong. Higher-Order Multivariable Euler’s Polynomial and Higher-Order Multivariable Bernoulli’s Polynomial[J]. Applied Mathematics and Mechanics, 1998, 19(9): 827-836.
Liu Guodong. Higher-Order Multivariable Euler’s Polynomial and Higher-Order Multivariable Bernoulli’s Polynomial[J]. Applied Mathematics and Mechanics, 1998, 19(9): 827-836.
Citation:
Liu Guodong. Higher-Order Multivariable Euler’s Polynomial and Higher-Order Multivariable Bernoulli’s Polynomial[J]. Applied Mathematics and Mechanics, 1998, 19(9): 827-836.
Higher-Order Multivariable Euler’s Polynomial and Higher-Order Multivariable Bernoulli’s Polynomial
Departmet of Mathematics, Huizhou University, Huizhou, Guangdong 516015, P.R. China
Received Date: 1996-11-11
Rev Recd Date:
1997-04-10
Publish Date:
1998-09-15
Abstract
In this paper,the definitions of both higher-order multivariable Euler's numbers and polynomial,higher-order multivariable Bernoulli's numbers and polynomial are given and some of their important properties are expounded.As a resut,the mathematical relationship between higher-order multivariable Euler's polynomial (numbers) and higher-order multivariable Bernoulli's polynomial (numbers) are thus obtained.
References
[1]
王竹溪、郭敦仁,《特殊函数概论》,科学出版社,北京 (1965),1-8,47-49.
[2]
A.爱尔台里,《高级超越函数》(张致中译),科学技术出版社,北京 (1957),45-46.
[3]
N.E.Noulund,Vorlesungen Über Difference Zenchnun g,Berlin (1923),29-37,110-156.
[4]
Tom M.Aposto,Introduction to Analytic Number,Springer-Verlag,Newyork,Iteidelberg,Berlin (1976).
[5]
W.H.拜尔,《标准数学手册》(荣现志、张顺忠译),化学工业出版社,北京 (1988),420-426.
[6]
日本数学会编,《数学百科辞典》(石胜文译),科学出版社,北京 (1984),1034-1035.
Proportional views