Ma Junhai, Chen Yushu, Liu Zengrong. Threshold Value for Diagnosis of Chaotic Nature of the Data Obtained in Nonlinear Dynamic Analysis[J]. Applied Mathematics and Mechanics, 1998, 19(6): 480-488.
Citation: Ma Junhai, Chen Yushu, Liu Zengrong. Threshold Value for Diagnosis of Chaotic Nature of the Data Obtained in Nonlinear Dynamic Analysis[J]. Applied Mathematics and Mechanics, 1998, 19(6): 480-488.

Threshold Value for Diagnosis of Chaotic Nature of the Data Obtained in Nonlinear Dynamic Analysis

  • Received Date: 1996-09-20
  • Rev Recd Date: 1998-03-01
  • Publish Date: 1998-06-15
  • In this paper surrogate data method of phase-randomized is proposed to identify the random or chaotic nature of the date obtained in dynamic analysis. The calculating results validate the phase-randomized method to be useful as it can increase the extent of accuracy of the results. And the calculating results show that threshold values of the random timeseries and nonlinear chaotic timeseries have marked difference.
  • loading
  • [1]
    Henry D.I.Abarbanel,Prediction in chaotic nonlinear systems methods for timeseries with broad- band Fourier spectra,Phys.B,5(1991),1347-1375.
    [2]
    J.Luis Cabrera and F.Javier,Numerical analysis of transient behavior in the discrete random Logistic equation with delay,Phys.Lett.A,197(1995),19-24.
    [3]
    Peter Grassberger,Fininte sample corrections to entropy and dimension estimates,Phys.Lett.A,125(1988),369-373.
    [4]
    James Theiler,Stephen Eubank,etc.,Testing for nonlinearity in time series the method of surrogate data,Physica D,58(1992),77-94.
    [5]
    Dean Prichard,The correlation dimension of differenced data,Phys.Lett.A,191(1994),245-250.
    [6]
    James Theiler,Spurious dimension from correlation algorit hms applied to limited time series data,Phys.Rev.A,34(1986),2427-2432.
    [7]
    S.Rombouts,R.Keunen,I nvestigation of nonlinear structure in multichannel EEG,Phys.Lett.A,202(1995),352-358.
    [8]
    Mat thew B.Kennel and Strven I sabelle,Method to distinguish possible chaos from colored noise and to determine embedding parameters,Phys.Rev.Lett.A,46(1992),3111-3118.
    [9]
    P.E.Rapp and A.M.Albano,Filtered noise can mimic low-dimensional chaotic attractors,Phys.Rev.E,47(1993),2289-2297.
    [10]
    Dean Prichard Generating surrogate data for time series with several simultaneously measured variables,Phys.Rev.Lett.,191(1994),230-245.
    [11]
    P.E.Rapp and A.M.Albano,Phase-randomized surrogates can produce spurious identifications of non-random structure,Phys.Lett.A,192(1994),27-33.
    [12]
    M.Casdagli and Alistair Mees,Modeling chaotic motions of a string from experimental data,Phys.Rev.E,54(1992),303-328.
    [13]
    P.E.Rapp and A.M.Albano,Predicting chaotic time series,Phys.Rev.E,47(1993),2289-2297.
    [14]
    Eric J.Kost elich,Problems in estimating dynamics from data,Phys.D,58(1992),138-152.
    [15]
    S.J.Schiff and T.Chang,Information transport in temporal systems,Phys.Rev.Lett.A,67(1992),378-393.
    [16]
    James Theiler,Some comments on the correlation dimension of noise,Phys.Lett.A,155(1991),480-493.
    [17]
    J.Timonen and H.Koskinen,An improved estimator of dimension and some comments on providing confidence intervals,Geophys.Res.Lett.,20(1993),1527-1536.
    [18]
    D.Prichard and C.P.Price,Reconstructing attractors from scalar time series:A comparison of singular system and redundancy criteria,Geophys.Res.,20(1993),2817-2825.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2277) PDF downloads(734) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return