Xu Shoudong, Wu Wangyi. A Hybrid Finite Element Scheme for Inviscid Supersonic Flows[J]. Applied Mathematics and Mechanics, 1997, 18(8): 685-693.
Citation: Xu Shoudong, Wu Wangyi. A Hybrid Finite Element Scheme for Inviscid Supersonic Flows[J]. Applied Mathematics and Mechanics, 1997, 18(8): 685-693.

A Hybrid Finite Element Scheme for Inviscid Supersonic Flows

  • Received Date: 1995-11-24
  • Rev Recd Date: 1997-03-03
  • Publish Date: 1997-08-15
  • A hybrid monotonous finite element algorithm is developed in the present paper,based on a second-order-accurate finite elment scheme and a first-order-accurate monotonous one derived from the former by a unilateral lumping procedure in onedimensional case. The switch functions for the two dimensional Euler equation systemare constructed locally, based on the gradient of the flow field, with specialcon sideration on the information from neighboring elements.Examples show that the new scheme can eliminate oscillations near strong shocks obviously.
  • loading
  • [1]
    A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys,49 (1983), 357.
    [2]
    R. Löhner, An adaptive finite element procedure for compressible high speed flows,Comput. Meths. Appl. Mech. Engrg., 51 (1985), 441.
    [3]
    J. Donea, A Taylor-Galerkin method for convective transport problems, Int. J.Numer. Meths. Engrg., 20 (1984), 101.
    [4]
    A. Harten, Self adjusting hybrid schemes for shock computations, J. Comput. Phys., 9(1972), 568.
    [5]
    O. C. Zienkwicz, The Finite Elemenl Method McGraw-Hill (1977).
    [6]
    S. K. Godunov, A difference scheme for numerical computation of discontinous solutionof hydrodynamic equations. Math. Sb., 47 (1959), 271.
    [7]
    T. J. R. Hughes, A high precision finite element method for shock-tube calculations,Fhlite Elenlents in Fluids. 6 (1985), 339.
    [8]
    B. Cockburn, TVB Range-Kutta local projection discontinous Galerkin finite elementmethod for coifservation laws: 2. A general framework., Math-Comput., 52 (1989), 411.
    [9]
    R. Löhner. Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations. Int. J. Nun. Meths. Fluids. 7 (1987), 1093.
    [10]
    徐守栋,求解超/高超声速无粘绕流的自适应有限元方法.北京大学博士学位论文(1992, 5).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1704) PDF downloads(443) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return