| Citation: | Xu Shoudong, Wu Wangyi. A Hybrid Finite Element Scheme for Inviscid Supersonic Flows[J]. Applied Mathematics and Mechanics, 1997, 18(8): 685-693. | 
 
	                | [1] | A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys,49 (1983), 357. | 
| [2] | R. Löhner, An adaptive finite element procedure for compressible high speed flows,Comput. Meths. Appl. Mech. Engrg., 51 (1985), 441. | 
| [3] | J. Donea, A Taylor-Galerkin method for convective transport problems, Int. J.Numer. Meths. Engrg., 20 (1984), 101. | 
| [4] | A. Harten, Self adjusting hybrid schemes for shock computations, J. Comput. Phys., 9(1972), 568. | 
| [5] | O. C. Zienkwicz, The Finite Elemenl Method McGraw-Hill (1977). | 
| [6] | S. K. Godunov, A difference scheme for numerical computation of discontinous solutionof hydrodynamic equations. Math. Sb., 47 (1959), 271. | 
| [7] | T. J. R. Hughes, A high precision finite element method for shock-tube calculations,Fhlite Elenlents in Fluids. 6 (1985), 339. | 
| [8] | B. Cockburn, TVB Range-Kutta local projection discontinous Galerkin finite elementmethod for coifservation laws: 2. A general framework., Math-Comput., 52 (1989), 411. | 
| [9] | R. Löhner. Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations. Int. J. Nun. Meths. Fluids. 7 (1987), 1093. | 
| [10] | 徐守栋,求解超/高超声速无粘绕流的自适应有限元方法.北京大学博士学位论文(1992, 5). | 
