Bian Yuhong. The Bending of Set-Squares with One Free Oblique Edge under a Concentrated Load[J]. Applied Mathematics and Mechanics, 1997, 18(7): 647-655.
Citation:
Bian Yuhong. The Bending of Set-Squares with One Free Oblique Edge under a Concentrated Load[J]. Applied Mathematics and Mechanics, 1997, 18(7): 647-655.
Bian Yuhong. The Bending of Set-Squares with One Free Oblique Edge under a Concentrated Load[J]. Applied Mathematics and Mechanics, 1997, 18(7): 647-655.
Citation:
Bian Yuhong. The Bending of Set-Squares with One Free Oblique Edge under a Concentrated Load[J]. Applied Mathematics and Mechanics, 1997, 18(7): 647-655.
The Bending of Set-Squares with One Free Oblique Edge under a Concentrated Load
Received Date: 1996-03-24
Rev Recd Date:
1997-01-30
Publish Date:
1997-07-15
Abstract
In the paper, the reciprocal theorem is applied to research on the bending of setsquare with one free oblique edge and two clamped edges under a concentrated loadacting at any point. This method is simpler and general.
References
[1]
付宝连,应用功的互等定理求解具有复杂边界条件的矩形板的挠曲面方程.应用数学和力学,3(3) (1982),315-325.
[2]
Timoshenkos, et al.,Theory of Plates and Shells,McGraw-Hill Book Company Inc.,New York (1959).
[3]
《数学手册》编写组,《数学手册》,高等教育出版社,北京(1979), 32-59, 194-207.
[4]
边宇虹,弹性矩形薄板弯曲广义位移解的功的互等定理法,东北重型机械学院硕士论文(1989).
[5]
边宇虹等,分布面力下四个角点被支承的矩形板弯曲,《工程力学》,北京科学技术出版社,北京(1992), 567-573.
[6]
边宇虹等,在线性分布弯矩作用下悬臂矩形板的弯曲,《工程力学》,北京科学技术出版社,北京(1992),701-707.
[7]
钱伟长、叶开沉,《弹性力学》,科学出版社,北京(1980).
Relative Articles
[1] ZHU Mingming, LI Lianhe. Fracture Mechanics Analysis of Thermoelectric Materials With Equilateral Triangle Holes [J]. Applied Mathematics and Mechanics, 2021, 42(6): 656-664. doi: 10.21656/1000-0887.410232
[2] CHEN Mingfei, LIU Kunpeng, JIN Guoyong, ZHANG Yantao, YE Tiangui, LIU Zhigang. Isogeometric in-Plane Vibration Analysis of Functionally Graded Triangular Plates [J]. Applied Mathematics and Mechanics, 2020, 41(2): 156-170. doi: 10.21656/1000-0887.400171
[3] FU Bao-lian. Corrected Reciprocal Theorem for 3D Linear Elasticity and Its Application [J]. Applied Mathematics and Mechanics, 2015, 36(5): 523-538. doi: 10.3879/j.issn.1000-0887.2015.05.008
[4] FU Bao-lian. The Reciprocal Theorem for the Finite Displacement Theory and Its Applications [J]. Applied Mathematics and Mechanics, 2015, 36(10): 1019-1034. doi: 10.3879/j.issn.1000-0887.2015.10.002
[5] HE Ying, SHAO Bao-dong, CHENG He-ming. Laminar Flow and Heat Transfer in Equilateral Triangle Micro-Channels [J]. Applied Mathematics and Mechanics, 2014, 35(3): 313-321. doi: 10.3879/j.issn.1000-0887.2014.03.010
[6] CHEN Yi-zhou. Degenerate Scale Problem in Antiplane Elasticity or Laplace Equation for Contour Shapes of Triangles or Quadrilaterals [J]. Applied Mathematics and Mechanics, 2012, 33(4): 500-512. doi: 10.3879/j.issn.1000-0887.2012.04.010
[7] HAN Feng, WANG Guang-zheng, KANG Chao-yang. Scattering of SH-Waves on the Isosceles Triangular Hill Joined by Semi-Cylindrical Canyon [J]. Applied Mathematics and Mechanics, 2011, 32(3): 293-311. doi: 10.3879/j.issn.1000-0887.2011.03.006
[8] CHEN Juan, LI Chong-jun, CHEN Wan-ji. A 17-Node Quadrilateral Spline Finite Element Using the Triangular Area Coordinates [J]. Applied Mathematics and Mechanics, 2010, 31(1): 117-126. doi: 10.3879/j.issn.1000-0887.2010.01.013
[9] Abdullah H. AlEssa, Mohamad I. Al-Widyan. Enhancement of Natural Convection Heat Transfer From a Fin by Triangular Perforations of Bases Parallel and Toward Its Tip [J]. Applied Mathematics and Mechanics, 2008, 29(8): 936-946.
[10] JIAO Gui-de, WANG Yin-bang. The Effect of an Elastic Triangular Inclusion on a Crack [J]. Applied Mathematics and Mechanics, 2003, 24(4): 378-384.
[11] Sheng Hongyu, Fan Jiarang. Axisymmetric Bending for Thick Laminated Circular Plate Under a Concentrated Load [J]. Applied Mathematics and Mechanics, 2000, (1): 87-93.
[12] Bian Yuhong. Bending of Rectangular Plate With Each Edges Arbitrary a Point Supported Under a Concentrated Load [J]. Applied Mathematics and Mechanics, 2000, 21(5): 535-540.
[13] Nie Yufeng, Zhou Tianxiao, Nie Tiejun. The Energy Orthogonal Relation Between Conforming and Non-Conforming Displacements of Triangular Element [J]. Applied Mathematics and Mechanics, 1999, 20(6): 619-624.
[14] Yun Tianquan. Analysis of Sloping Elastic Pile Under Arbitrary Loads by Line-Loaded Integral Equation Method [J]. Applied Mathematics and Mechanics, 1999, 20(4): 351-357.
[15] Li Huijian, Fu Baolian, Tan Wenfeng. Reciprocal Theorem Method for the Forced Vibration of Elastic Thick Rectangular Plates [J]. Applied Mathematics and Mechanics, 1998, 19(2): 175-188.
[16] Fu Bao-lian, Tan Wen-feng. Reciprocal Theorem Method for Solving the Problems of Bending of Thick Rectangular Plates [J]. Applied Mathematics and Mechanics, 1995, 16(4): 367-379.
[17] Zhang Jian-hai, Li Yong-nian, Chen Da-peng. The Generation of Non-Linear Stiffness Matrix of Triangle Element when Considering Both the Bending and in-Plane Membrane Forces [J]. Applied Mathematics and Mechanics, 1994, 15(5): 399-408.
[18] Wen Pi-hua. The Elastic Solution of Concentrated Force Acting in Orthogonal Anisotropic Half-Plane and Constant Element Fundamental Formulae of Boundary Element Method [J]. Applied Mathematics and Mechanics, 1992, 13(12): 1117-1126.
[19] Fu Bao-lian, Li Nong. The Method of the Reciprocal Theorem of Forced Vibration for the Elastic Thin Rectangular Plates(Ⅲ)—Cantilever Rectangular Plates [J]. Applied Mathematics and Mechanics, 1991, 12(7): 621-638.
[20] Fu Bao-lian, Li Nong. The Method of the Reciprocal Theorem of Force Vibration for the Elastic Thin Rectangular Plates (Ⅱ)——Rectangular Plates with Two Adjacent Clamped Edges [J]. Applied Mathematics and Mechanics, 1990, 11(11): 977-988.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 21.0 % FULLTEXT : 21.0 % META : 78.5 % META : 78.5 % PDF : 0.4 % PDF : 0.4 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 2.7 % 其他 : 2.7 % China : 0.2 % China : 0.2 % 上海 : 0.3 % 上海 : 0.3 % 加利福尼亚州 : 0.3 % 加利福尼亚州 : 0.3 % 北京 : 2.0 % 北京 : 2.0 % 嘉兴 : 0.1 % 嘉兴 : 0.1 % 大连 : 0.1 % 大连 : 0.1 % 张家口 : 2.6 % 张家口 : 2.6 % 成都 : 0.2 % 成都 : 0.2 % 新奥尔良 : 0.1 % 新奥尔良 : 0.1 % 洛杉矶 : 0.1 % 洛杉矶 : 0.1 % 深圳 : 0.3 % 深圳 : 0.3 % 温州 : 0.1 % 温州 : 0.1 % 漳州 : 0.1 % 漳州 : 0.1 % 盘锦 : 0.3 % 盘锦 : 0.3 % 石家庄 : 0.7 % 石家庄 : 0.7 % 芒廷维尤 : 16.4 % 芒廷维尤 : 16.4 % 芝加哥 : 0.1 % 芝加哥 : 0.1 % 苏州 : 0.1 % 苏州 : 0.1 % 西宁 : 73.1 % 西宁 : 73.1 % 其他 China 上海 加利福尼亚州 北京 嘉兴 大连 张家口 成都 新奥尔良 洛杉矶 深圳 温州 漳州 盘锦 石家庄 芒廷维尤 芝加哥 苏州 西宁