Zhang Wei, Chen Yushu. Adjoint operator Method and Normal Forms of Higher order for Nonlinear Dynamical System[J]. Applied Mathematics and Mechanics, 1997, 18(5): 421-432.
Citation: Zhang Wei, Chen Yushu. Adjoint operator Method and Normal Forms of Higher order for Nonlinear Dynamical System[J]. Applied Mathematics and Mechanics, 1997, 18(5): 421-432.

Adjoint operator Method and Normal Forms of Higher order for Nonlinear Dynamical System

  • Received Date: 1996-03-06
  • Publish Date: 1997-05-15
  • Normal form theory is,a very effective method when we study degeneratebifurcations of nonlinear dynamical systems.In this paper by using adjoint operatormethod,normal forms of order 3 and 4 for nonlinear dynamical system with nilpotentlinear part and Z2-asymmetry are computed.According to normal forms obtained,universal unfoldings for some degenerate bifurcation cases of codimension 3 and simpleglobal characterizations,are studied.
  • loading
  • [1]
    V.1.Arnold,Geometrical Method in the Theory of Ordinary Dijjerential Equations,Springer-Verlag,Berlin(1983).
    [2]
    R.I.Bogdanov,Bifurcation of the limit cycle of a family of plane vector field,Sel.Math.Sov.,1(1981),373-387.
    [3]
    R.I.Bogdanov,Versal deformation of a singularity of a vector field on the plane in the case of zero eigenvalues,Sel.Math.Sov.,1(1981),389-421.
    [4]
    A.D.Bruno,Local Methods in Nonlinear Differential Equations,Springer-Verlag,Berlin(1989).
    [5]
    S.N.Chow and J.K.Hale,Methods of Bifurcation Theory,Springer-Verlag,Berlin(1982).
    [6]
    S.N.Chow and D.Wang,Normal form of bifurcating periodic orbits,Multi-parameter bifurcation theory,M.Golubitsky and J.Guckenheimer(eds),Contemporary Math.,56(1986),9-18.
    [7]
    R.Cushman and J.Sanders,Nilpotent normal forms and representation theory of s1(2,R),Multi-parameter bifurcation theory,M.Golubitsky and J.Gguckenheimer(eds),Contemporary.Math.,56(1986),31-51.
    [8]
    R.Cushman and J.Sanders;Splitting algorithm for nilpotent normal forms,Dynamics and Stabilitv oJSystems.2(1988),235-246.
    [9]
    R.Cushman,A.Deprit and R.Mosad,Normal forms and representation theory,J.Math.Phys.,24(1983),2103-2116.
    [10]
    C.Elphick,E.Tirapegui,M.E.Bracher,P.Coullet and G.Iooss,A simple global characterization for normal forms of singular vector fields.Phys.D.,29(1987),95-117.
    [11]
    J.Guckenheimer and P.Holmes.Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields,Springer-Verlag,Berlin(1983).
    [12]
    R.Rand and D.Armbruster,Perturbation Method,Bifurcation Theory and Computer Algebra,Springer-Verlag,Berlin(1987).
    [13]
    F.Takens,Normal forms for certain singularities of vector fields,Ann.Inst.Fourier,23(1973),163-195.
    [14]
    F.Takens,Singularities of vector fields,Publ.Math.IHES,43(1974),47-100.
    [15]
    P.Holmes and D.A.Rand,Phase portraits and bifurcations of the nonlinear oscillator x+(a+yx2)x+βx+δ3=0,Int.J.Non-Linear Mech.,15(1980),449-458.
    [16]
    P.Holmes,Center manifolds,normal forms and bifurcations of vector Gelds with application to coupling between periodic and steady motions,Phy.D.,2(1981),449-481.
    [17]
    A.K.Bajaj,Bifurcations in a parametrically excited nonlinear oscillator,Int.J.Nonlinear Mech.,22(1987),47-59.
    [18]
    A.K.Bajaj,Nonlinear dynamics of tubes carrying a pulsatile folw,Dynamics and Stability of Systems,2(1987),19-41.
    [19]
    J.Shaw and S.W.Shaw,The effects of unbalance on oil whirl,Nonlinear Dynamic's,1(1990),293-311.
    [20]
    N.Sri.Namachchivaya,Co-dimension two bifurcations in the presence of noise,ASME,J.Appl.Mech.,58(1991),259-265.
    [21]
    W.Zhang and Q.Z.Huo,Degenerate bifurcations of codimension two in nonlinear oscillator under combined parametric and forcing excitation,Acta Mechanica Sinica,24(1992),717-727.
    [22]
    W.Zhang and Q.Z.1-Iuo,Degenerate bifurcations of codimension two in nonlinear oscillator for 1/2 subharmonic resonance-primary parametric resonance,Theory,Method and Application of Nonlinear Mechanics,C.J.Cheng and Z.H.Guo(eds),Modern Mathematics and Mechanics(MMM) IV(1991),431-437.
    [23]
    W.Zhang and Q.Z.Huo,Bifurcations of the cusp singularity in a nonlinear oscillator under combined parametric and forcing excitation,J.Vibration Engineering,6(1992),355-366.
    [24]
    Y.S.Chen and J.Xu,Periodic respones and bifurcation theory of nonlinear Hill system,J.Nonlinear Dynamics in Science and Technology,1(1993),1-14.
    [25]
    F.Dumortier,R.Roussarie aid J.Sotomayor,Generic 3-parameter families of vector fields on the plane,unfolding a singularity with nilpotent linear part the cusp case,Ergodic Theory and Dynamical,Systems,7(1987),375-413.
    [26]
    F.Dumortier,R.Roussarie and J.Sotomayor,Generic 3-parameter families of planar vector fields,unfolding of saddle,focus and elliptic singularities with nilpotent linear parts,Preprint.(1990).
    [27]
    F.Dumortier and P.Fiddelares,Quadratic models for generic local 3 parameter bifurcations on the plane,Trans.Amer.Math.Soc.,326(1991),101-126.
    [28]
    D.Wang,An introduction to the normal form theory of ordinary differentital equations,Advances in Mathematics,19(1990),38-71.
    [29]
    W.Zhang,Computation of the higher order normal form and codimension three degenerate bifurcation in a nonlinear dynamical system with Z2-symmetry,Acta Mechanica Sinica,25(1993),548-559.
    [30]
    A.E.Taylor and D.C.Lay,Introduction to Functional Analysis,John Wiley and Sons,Interscience(1980).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3016) PDF downloads(705) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return