Ma Runnian, Gao Hangshan. On(g, f)-Factorizations of Graghs[J]. Applied Mathematics and Mechanics, 1997, 18(4): 381-384.
Citation: Ma Runnian, Gao Hangshan. On(g, f)-Factorizations of Graghs[J]. Applied Mathematics and Mechanics, 1997, 18(4): 381-384.

On(g, f)-Factorizations of Graghs

  • Received Date: 1995-07-10
  • Rev Recd Date: 1996-04-22
  • Publish Date: 1997-04-15
  • Let G be a graph and g, f be two nonnegative integer-valued functions defined on thevertices set V(G) of G and gf, A (g, f)-factor of a graph G is a spanning subgraph F of G such that g(x)dF(x)≤f(x) for all x∈V(G). If G itself is a (g, f)-factor, then itis said that G is a (g, f)-graph. If the edges of G can be decomposed into some edgedisjoint (g, f)-factors, then it is called that G is (g, f)-factorable. In this paper, onesufficient condition for a graph to be (g, f)-factorable is given.
  • loading
  • [1]
    J.Akiyama and M, Kano, Factors and factorizations of graphs-a survey,Journal of Graph Theory,9(1985),1-42.
    [2]
    M,K ano,[a,b]-Factorization of a graph,Journal of Graph Theory,9(1985),129-146.
    [3]
    M,C.Cai,On some factor theorems of graphs,Discrete Mathematics,98(1991),225-229.
    [4]
    马润年、白国强,图的(g.f)一因子分解,内蒙古大学学报(自然科学版),22(1991),296-299.
    [5]
    马润年,图的(g.f)一因子和(g. f)一因子分解,空军电讯工程学院学报,14(1992),71-76.
    [6]
    刘桂真,图的(g.f)一因子和因子分解,数学学报,37(1994),130-137,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2050) PDF downloads(547) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return