Chen Songlin. Singular Perturbation for a Nonlinear Boundary Value Problem of First Order System[J]. Applied Mathematics and Mechanics, 1996, 17(11): 1033-1038.
Citation: Chen Songlin. Singular Perturbation for a Nonlinear Boundary Value Problem of First Order System[J]. Applied Mathematics and Mechanics, 1996, 17(11): 1033-1038.

Singular Perturbation for a Nonlinear Boundary Value Problem of First Order System

  • Received Date: 1984-04-08
  • Rev Recd Date: 1996-04-15
  • Publish Date: 1996-11-15
  • In this paper, we study the following perturbed nonlinear boundary value problem of the form:εx'=f(t,x,y,ε)εy'=g(t,x,y,ε)x(0)= A(ξ12,x(1) -x(0),y(1)- y(0),ε)y(0)=B(ξ1, ξ2,x(1)-x(0),y(1)-g(0),ε) where ξ1, ξ2 are functions of ε. 0<ε<<1. Under some suitable conditions, we give the asymptotic expansion of solution of any order, and obtain the estimation of remaindet term by using the comparison theorem.
  • loading
  • [1]
    F, A, Howes,Differential inequalities of higher order and the asymptotic solution of nonlinear boundary value problems, SIAM J.Meth.Anal,,13(1982), 61-80,
    [2]
    康盛亮、陈琪,非线性向量边值问题的奇摄动,应用数学和力学,9(9) (1988), 817-824,
    [3]
    江福汝,关于常微分方程非线性边值问题的奇异摄动,中国科学(A辑),3 (1985),232-242,
    [4]
    A, McNabb, Comparison theorems for differential equatioas, J.Math, Anal,Appl.,19 (1988), 417-428,
    [5]
    A, McNabb and G, Weir, Comparison theorems for ordinary differential equations with geaeral boundary conditioas,J, Math, Anal.Appl,,130(1988),144-154,
    [6]
    J, K, Hale, Ordinary Dif fereutial Equations, Robert E, Krieger Pub, Co,,Huntiagton (1980),
    [7]
    Mo Jiaqi(莫嘉琪),Singular perturbation for a boundary value problem of forth order nonlinear differential equation,Chin, Ann Math.,8B(1987), 80-88.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2189) PDF downloads(482) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return