Yun Tian-quan. Solution of a 2-D Weak Singular Integral Equation with Constraint[J]. Applied Mathematics and Mechanics, 1995, 16(5): 415-420.
Citation:
Yun Tian-quan. Solution of a 2-D Weak Singular Integral Equation with Constraint[J]. Applied Mathematics and Mechanics, 1995, 16(5): 415-420.
Yun Tian-quan. Solution of a 2-D Weak Singular Integral Equation with Constraint[J]. Applied Mathematics and Mechanics, 1995, 16(5): 415-420.
Citation:
Yun Tian-quan. Solution of a 2-D Weak Singular Integral Equation with Constraint[J]. Applied Mathematics and Mechanics, 1995, 16(5): 415-420.
Solution of a 2-D Weak Singular Integral Equation with Constraint
Received Date: 1994-03-15
Rev Recd Date:
1994-12-10
Publish Date:
1995-05-15
Abstract
In this paper, the solution of a 2-D weak singular integral equation of tire first kind subjected to constraint is found and listed p=p(r,θ)={2/[π2 k(φ0 ]}√F(r,θ)-c* (0≤r≤r* ) where(s,φ)is a local polar coordhrating with orighr at M(r,θ),(r,θ)is the global polar coordinating with origin at O(0,0):k and F are given continuous functions;φ0 and C are constant;F(r* ,θ)=c* (const.)is the boundary contour of considering range Q . The method used can be extended to 3-D cases.
References
[1]
S.P.Timoshenko and J.N.Goodiar,Theory of Elasticity,MdGraw-Hill Book Co.,New York(1970),414.
[2]
Yun Tian-quan,Solution of Hertz's contact problem by Radon transform,Proc.2nd Int.Conf.on Nonlinear Mech.,(Edited by Chien Wei-zang et al.),Beijing(1993),215-218.
[3]
Yun Tian-quan,Asymptotic solution of small parametered 2-D integral equation arising form contact problem of elasticity based on the solution of a 2-D integral equation,Proceedings of AMS.
[4]
Yun Tian-quan,The exact integral equation of Hertz's contact problem,Appl.Math.and Mech.(English Ed.),12,2(1991),181-185.
[5]
G.T.Herman,The fundamentais of computerized tomography,Image Reconstruction from Projections,Academic Press,INC,New York(1980).
[6]
云天锉,《积分方程及其在力学中的应用》,华南理工大学出版社,广州(1990),60
Relative Articles
[1] LI Yihao, XU Dian, CHEN Yiming, AN Dongqi, LI Rui. Finite Integral Transform Solutions for Free Vibrations of Rectangular Thin Plates With Mixed Boundary Constraints [J]. Applied Mathematics and Mechanics, 2023, 44(9): 1112-1121. doi: 10.21656/1000-0887.440051
[2] DAI Wenxin, LIU Tiejun. Investigation on the 2D Contact of Multilayer Functionally Graded Piezoelectric Material Coating Under Conducting Indenters [J]. Applied Mathematics and Mechanics, 2023, 44(3): 282-303. doi: 10.21656/1000-0887.430187
[3] GU Chuan-qing, PAN Bao-zheng, WU Bei-bei. Orthogonal Polynomials and Determinant Formulas of Function-Valued Padé-Type Approximation Using for Solution of Integral Equations [J]. Applied Mathematics and Mechanics, 2006, 27(6): 750-756.
[4] BIAN Wen-feng, WANG Biao, JIA Bao-xian. Mathematical Problems in the Integral-Transformation Method of Dynamic Crack [J]. Applied Mathematics and Mechanics, 2004, 25(3): 228-232.
[5] LU Zhi-hua, YE Qing-tai. A New Satic Mechanics Model to Solve Contact Problems in Mechanical Systems [J]. Applied Mathematics and Mechanics, 2004, 25(11): 1203-1210.
[6] LI Chun-jing, GU Chuan-qing. Epsilon-Algorithm and Eta-Algorithm of Generalized Inverse Function-Valued Padé Approximants Using for Solution of Integral Equations [J]. Applied Mathematics and Mechanics, 2003, 24(2): 197-204.
[7] GU Chuan-qing, LI Chun-jing. Computation Formulas of Generalised Inverse Padé Approximant Using for Solution of Integral Equations [J]. Applied Mathematics and Mechanics, 2001, 22(9): 952-958.
[8] ZHANG Yao-ming, SUN Huan-chun, YANG Jia-xin. Equivalent Boundary Integral Equations With Indirect Unknowns for Thin Elastic Plate Bending Theory [J]. Applied Mathematics and Mechanics, 2000, 21(11): 1125-1132.
[9] Hong Shihuang, Hu Shigeng. Existence of Solutions for Periodic Boundary Value Problem for Second Order Integro-Differential Equations [J]. Applied Mathematics and Mechanics, 2000, 21(3): 315-322.
[10] Yun Tianquan. General Solution of a 2-D Weak Singular Integral Equation with Constraint and Its Applications [J]. Applied Mathematics and Mechanics, 1997, 18(8): 695-701.
[11] Xu Mingtian, Cheng Delin. Solving Vibration Problem of Thin Plates Using Integral Equation Method [J]. Applied Mathematics and Mechanics, 1996, 17(7): 655-660.
[12] Gao Yang. Contact Problems and Dual Variational Inequality of 2-D Elastoplastic Beam Theory [J]. Applied Mathematics and Mechanics, 1996, 17(10): 895-908.
[13] Yun Tian-quan. The Exact Integral Equation of Hertz’s Contact Problem [J]. Applied Mathematics and Mechanics, 1991, 12(2): 165-169.
[14] Wang Qing, Xu Bo-hou. On the Uniqueness of Boundary Integral Equation for the Exterior Helmholtz Problem [J]. Applied Mathematics and Mechanics, 1990, 11(10): 903-909.
[15] Shang Yong, Chen Zhi-da. On Large Deformation Unilateral Contact Problem with Friction(Ⅰ)——Incremental Variational Equations [J]. Applied Mathematics and Mechanics, 1989, 10(12): 1049-1058.
[16] Yun Tian-quan. Representation Theorem and One-Iteration Theorem for Fredholm Integral Equation of the First Kind Ax=y [J]. Applied Mathematics and Mechanics, 1989, 10(7): 569-574.
[17] Ye Qing-kai. Solve a Contact Problem by Optimization Method——to Calculate the Stresses for the Softwheel in a Harmonic Gear [J]. Applied Mathematics and Mechanics, 1988, 9(5): 469-474.
[18] Peng Xiao-lin, He Guang-qian. The Establishment of Boundary Integral Equations by Generalized Functions [J]. Applied Mathematics and Mechanics, 1986, 7(6): 497-504.
[19] Yun Tian-quan. Theorem of the Uniqueness of Displacement and Stress Fields of Line-Loaded Integral Equation Method [J]. Applied Mathematics and Mechanics, 1985, 6(3): 219-222.
[20] Yun Tain-quan. An Iteration Method for Integral Equations Arising from Axisymmetric Loading Problems [J]. Applied Mathematics and Mechanics, 1980, 1(1): 115-123.
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 2025-05 0 10 20 30 40 50
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 16.9 % FULLTEXT : 16.9 % META : 82.7 % META : 82.7 % PDF : 0.4 % PDF : 0.4 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 5.8 % 其他 : 5.8 % China : 0.8 % China : 0.8 % 上海 : 0.1 % 上海 : 0.1 % 北京 : 3.6 % 北京 : 3.6 % 南宁 : 0.1 % 南宁 : 0.1 % 台州 : 0.1 % 台州 : 0.1 % 哥伦布 : 0.1 % 哥伦布 : 0.1 % 哥本哈根 : 0.1 % 哥本哈根 : 0.1 % 张家口 : 3.0 % 张家口 : 3.0 % 昆明 : 0.1 % 昆明 : 0.1 % 洛杉矶 : 0.4 % 洛杉矶 : 0.4 % 深圳 : 0.2 % 深圳 : 0.2 % 石家庄 : 0.4 % 石家庄 : 0.4 % 芒廷维尤 : 10.1 % 芒廷维尤 : 10.1 % 苏州 : 0.1 % 苏州 : 0.1 % 西宁 : 74.3 % 西宁 : 74.3 % 西安 : 0.1 % 西安 : 0.1 % 郑州 : 0.3 % 郑州 : 0.3 % 其他 China 上海 北京 南宁 台州 哥伦布 哥本哈根 张家口 昆明 洛杉矶 深圳 石家庄 芒廷维尤 苏州 西宁 西安 郑州