Jiao Zhao-ping, Wu Chang-chun, T. H. H. Pian. Geometrically Nonlinear Analysis of Mindlin Plate Using the Incompatible Bending Elements with Internal Shear Strain[J]. Applied Mathematics and Mechanics, 1994, 15(6): 479-488.
Citation:
Jiao Zhao-ping, Wu Chang-chun, T. H. H. Pian. Geometrically Nonlinear Analysis of Mindlin Plate Using the Incompatible Bending Elements with Internal Shear Strain[J]. Applied Mathematics and Mechanics, 1994, 15(6): 479-488.
Jiao Zhao-ping, Wu Chang-chun, T. H. H. Pian. Geometrically Nonlinear Analysis of Mindlin Plate Using the Incompatible Bending Elements with Internal Shear Strain[J]. Applied Mathematics and Mechanics, 1994, 15(6): 479-488.
Citation:
Jiao Zhao-ping, Wu Chang-chun, T. H. H. Pian. Geometrically Nonlinear Analysis of Mindlin Plate Using the Incompatible Bending Elements with Internal Shear Strain[J]. Applied Mathematics and Mechanics, 1994, 15(6): 479-488.
Geometrically Nonlinear Analysis of Mindlin Plate Using the Incompatible Bending Elements with Internal Shear Strain
1.
South China Construction University, West Campus, Guangzhou;
2.
University of Science and Technology of China Hefei;
3.
Massachusetts Institute of Technology, Cambridge, USA
Received Date: 1993-07-20
Publish Date:
1994-06-15
Abstract
An approach of the incompatible elements with additional internal shear strain is suggested and applied to geometrically nonlinear analysis of Mindlin plate bending problem, It provides a quite covenient way to avoid the shear locking troubles. An energy consistency condition for this kind of C0 elements is offered.The nonlinear element formulations and some numerical results are presented.
References
[1]
Hughes,T,J.R.,R.L.Taplor and S,Kanonukulchai,A simple and efficient finite element for bending,Int.J.Num,Meth,Eng.,11(1977),1529-1543.
[2]
Lee,S.W.and T.H,H.Pian,Improvement of plate and shell finite element by miaed formulations.AIAA.J.16 (1978),29-34.
[3]
Hinton.E,and H.C.Huang,A family of quadrilateral Mindlin plate elements with substitute shear strain fields,Computers & Structures 23(1986),409-431.
[4]
Papadopoulo,P.and R.L.Taylor,A triangular element based on Reissner-Mindlin plate theory,Int.J.Num,Meth.Eng.,30(1990),1029-1049
[5]
钱伟长,《变分法及有限元》.科学出版社(1980).
[6]
Wu Chang-chun Huang Nac-guang and T.H.H.Piar,Consistency condition.
Relative Articles
[1] ZHUO Yingpeng, WANG Gang, QI Zhaohui, ZHANG Jian. A Spatial Geometric Nonlinearity Spline Beam Element With Nodal Parameters Containing Strains [J]. Applied Mathematics and Mechanics, 2022, 43(9): 987-1003. doi: 10.21656/1000-0887.420290
[2] QI Zhao-hui, FANG Hui-qing, ZHANG Zhi-gang, WANG Gang. Geometric Nonlinear Spatial Beam Elements With Curvature Interpolations [J]. Applied Mathematics and Mechanics, 2014, 35(5): 498-509. doi: 10.3879/j.issn.1000-0887.2014.05.004
[3] ZHANG Zhi-gang, QI Zhao-hui, WU Zhi-gang. Large Deformation Beam Element Based on Curvature Interpolation [J]. Applied Mathematics and Mechanics, 2013, 34(6): 620-629. doi: 10.3879/j.issn.1000-0887.2013.06.008
[4] TANG Di, LU Zhi-liang, GUO Tong-qing. Aeroelastic Analysis of Large Horizontal Axis-Wind Turbine Blades [J]. Applied Mathematics and Mechanics, 2013, 34(10): 1091-1097. doi: 10.3879/j.issn.1000-0887.2013.10.009
[5] LIU Xiao-hui, YAN Bo, ZHANG Hong-yan, ZHOU Song. Nonlinear Numerical Simulation Method for Galloping of Iced Conductor [J]. Applied Mathematics and Mechanics, 2009, 30(4): 457-468.
[6] ZHANG Neng-hui, WANG Jian-jun, CHENG Chang-jun. Complex-Mode Galerkin Approach in Transverse Vibration of an Axially Accelerating Viscoelastic String [J]. Applied Mathematics and Mechanics, 2007, 28(1): 1-8.
[7] LI Wei-hua, LUO En, HUANG Wei-jiang. Unconventional Hamilton-Type Variational Principles for Nonlinear Elastodynamics of Orthogonal Cable-Net Structures [J]. Applied Mathematics and Mechanics, 2007, 28(7): 833-842.
[8] ZHENG Yu-fang, FU Yi-ming. Effect of Damage on Nonlinear Dynamic Properties of Viscoelastic Rectangular Plates [J]. Applied Mathematics and Mechanics, 2005, 26(3): 293-299.
[9] TAN Mei-lan, WANG Xin-wei. New Method for Geometric Nonlinear Analysis of Large Displacement Drill Strings [J]. Applied Mathematics and Mechanics, 2005, 26(7): 847-853.
[10] WU Jun, CHEN Li-qun. Steady-State Responses and Their Stability of Nonlinear Vibration of an Axially Accelerating String [J]. Applied Mathematics and Mechanics, 2004, 25(9): 917-926.
[11] YAN Kun, HE Ling-hui, LIU Ren-huai. Shape Bifurcation of an Elastic Wafer Due to Surface Stress [J]. Applied Mathematics and Mechanics, 2003, 24(10): 1012-1016.
[12] ZHU Wei-ping, HUANG Qian. Finite Element Displacement Perturbation Method for Geometric Nonlinear Behaviors of Shells of Revolution Overall Bending in a Meridional Plane and Application toBellows(Ⅱ) [J]. Applied Mathematics and Mechanics, 2002, 23(12): 1241-1254.
[13] ZHU Wei-ping, HUANG Qian. Finite Element Displacement Perturbation Method for Geometric Nonlinear Behaviors of Shells of Revolution Overall Bending in a Meridional Plane and Application to Bellows(Ⅰ) [J]. Applied Mathematics and Mechanics, 2002, 23(12): 1227-1240.
[14] Yu Aimin. Generalized Variational Principle on Nonlinear Theory of Naturally Curved and Twisted Closed Thin-Walled Composite Beams [J]. Applied Mathematics and Mechanics, 2000, 21(3): 290-296.
[15] Chen Liangsen, Zhao Xinghua, Fu Minfu. The Simple Shear Oscillation and the Restrictions to Elastic-Plastic Constitutive Relations [J]. Applied Mathematics and Mechanics, 1999, 20(6): 559-568.
[16] Yang Lian. A Reasonable Method for Constracting General Element DM4 of Thick and Thin Plate with Effectual and Realiable Numerical Solution [J]. Applied Mathematics and Mechanics, 1999, 20(3): 305-313.
[17] Jiang Xiao-yu, Zhang Xiang-zhou. Nonlinear Three-Dimension Analysis for Axially Sym-metrical Circular Plates and Multilayered Plates [J]. Applied Mathematics and Mechanics, 1993, 14(8): 715-727.
[18] Li Li-juan, Mei Zhan-xin, Wan Hong, Liu Feng. Nonlinear Strain Components of General Shells with Initial Geometric Imperfections [J]. Applied Mathematics and Mechanics, 1992, 13(7): 651-657.
[19] Li Dong. Nonlinear Vibrations of Orthotropic Shallow Shells of Revolution [J]. Applied Mathematics and Mechanics, 1992, 13(4): 313-325.
[20] Li Dong. Application of the Modified iteration Method to Nonlinear Postbuckling Analysis of Thin Circular Plates [J]. Applied Mathematics and Mechanics, 1991, 12(12): 1075-1080.
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 2025-05 2025-06 2025-07 0 10 20 30 40
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 14.0 % FULLTEXT : 14.0 % META : 85.2 % META : 85.2 % PDF : 0.8 % PDF : 0.8 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 8.0 % 其他 : 8.0 % China : 0.8 % China : 0.8 % 上海 : 0.4 % 上海 : 0.4 % 临沂 : 0.1 % 临沂 : 0.1 % 北京 : 2.0 % 北京 : 2.0 % 华盛顿州 : 0.1 % 华盛顿州 : 0.1 % 南宁 : 0.1 % 南宁 : 0.1 % 哥伦布 : 0.2 % 哥伦布 : 0.2 % 大连 : 0.2 % 大连 : 0.2 % 张家口 : 2.7 % 张家口 : 2.7 % 无锡 : 0.7 % 无锡 : 0.7 % 杭州 : 0.7 % 杭州 : 0.7 % 武汉 : 0.1 % 武汉 : 0.1 % 沈阳 : 0.7 % 沈阳 : 0.7 % 洛杉矶 : 0.5 % 洛杉矶 : 0.5 % 深圳 : 0.4 % 深圳 : 0.4 % 温州 : 0.7 % 温州 : 0.7 % 石家庄 : 0.7 % 石家庄 : 0.7 % 福州 : 0.5 % 福州 : 0.5 % 芒廷维尤 : 7.2 % 芒廷维尤 : 7.2 % 苏州 : 0.1 % 苏州 : 0.1 % 衢州 : 0.4 % 衢州 : 0.4 % 西宁 : 72.1 % 西宁 : 72.1 % 西安 : 0.1 % 西安 : 0.1 % 郑州 : 0.4 % 郑州 : 0.4 % 其他 China 上海 临沂 北京 华盛顿州 南宁 哥伦布 大连 张家口 无锡 杭州 武汉 沈阳 洛杉矶 深圳 温州 石家庄 福州 芒廷维尤 苏州 衢州 西宁 西安 郑州