Niu Zhong-rong. Nonlinear Bending of the Shallow Spherical Shells with Variable Thickness under Axisymmetricai Leads[J]. Applied Mathematics and Mechanics, 1993, 14(11): 971-978.
Citation: Niu Zhong-rong. Nonlinear Bending of the Shallow Spherical Shells with Variable Thickness under Axisymmetricai Leads[J]. Applied Mathematics and Mechanics, 1993, 14(11): 971-978.

Nonlinear Bending of the Shallow Spherical Shells with Variable Thickness under Axisymmetricai Leads

  • Received Date: 1992-10-05
  • Publish Date: 1993-11-15
  • Based on the differential equation of the nonlinear bending of shallow spherical shells with variable thickness under axisymmetrical loads, this paper studies the numerical solution of the nonlinear differential equation by means of interpolating matrix method. The analysis of the results indicates that the suggested method is easy to implement and obtains the same high accuracy for both the displacements and the internal forces.
  • loading
  • [1]
    牛忠荣,两点边值问题的一个新方法—插值矩阵法,合肥工业大学学报,9(9)(1987),92-102.
    [2]
    叶开沅,刘人怀等,圆底扁薄球壳的非线性稳定问题(1,1),科学通报,2(1965),142-147.
    [3]
    刘人怀,在内边缘均布力矩作用下中心开孔圆底扁球壳的非线性稳定问题,抖学通报,3(1965),253-255.
    [4]
    斯米尔诺夫A·φ·,《结构的振动和稳定性》(楼志文译),科学出版社,北京,1963.
    [5]
    Cash J.R.,On the numerical integration of nonlinear two point boundary value problems using iserated deferred corrections,SAAM J.Numerical Analysis,25(4)(1988),862-882.
    [6]
    Daniel J.W.A road rnap of methods for approxim acing solutions of two paint boundary value problems,Lcctur Noies in Computer,Science,76( 1978),1-18.
    [7]
    严圣平,扁球壳在均布压力作用下的非线性弯曲问题,应用力学学报,5(3)(1988),21-29.
    [8]
    高建岭,结构分析的有限元线法,清华大学博士论文,(1990).
    [9]
    肖凡,变厚度扁球壳的非线性分析,工程力学,7(1)(1990),8-17.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1969) PDF downloads(612) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return