Guo Ben-yu, Cao Wei-ming. Spectral-Finite Element Method for Compressible Fluid Flow[J]. Applied Mathematics and Mechanics, 1992, 13(8): 677-692.
Citation: Guo Ben-yu, Cao Wei-ming. Spectral-Finite Element Method for Compressible Fluid Flow[J]. Applied Mathematics and Mechanics, 1992, 13(8): 677-692.

Spectral-Finite Element Method for Compressible Fluid Flow

  • Received Date: 1991-04-15
  • Publish Date: 1992-08-15
  • In this paper, a combined Fourier spectral-finite element method is proposed for solving n-dimensional (n=2,3), semi-periodic compressible fluid flow problems. The strict error estimation as well as the convergence rate, is presented.
  • loading
  • [1]
    Roache, P. J., Computational Fluid Dynamics, 2nd Ed, Hermosa Publishers, Albuqueque (1976).
    [2]
    Atusi, Tani, The existence and uniqueness of the solution of equations describing compressible viscous fluid flow in a domain, Proc. Japan Acad., 52(1976), 334-337.
    [3]
    郭本瑜,《偏微分方程的差分方法》,科学出版社(1988).
    [4]
    Kuo Pen-yu, Résolution numérique de fluidè compressible, C. R. Acad. Sc. Paris, 291A(1980), 167-171.
    [5]
    Guo Ben-yu, Strict error estimation of numerical solution of compressible flow in two-dimensional space, Scientia Sinica, 26A(1983), 482-498.
    [6]
    Chung, T. J., Finite Element Analysis in Fluid Dynamics, McGraw-Hill International Book Company (1978).
    [7]
    Guo Ben-yu and Ma He-ping, Strict error estimation for a spectral method of compressible fluid flow, CalColo, 24 (1987), 263-282.
    [8]
    Canuto, C., Y. Maday and A. Quarteroni, Analysis of the combined finite element and Fourier interpolation, Numer. Math., 39(1982), 205-220.
    [9]
    Canuto, C., Y. Maday and A. Quarteroni, Combined finite element and spectral approximation of the Navier-Stokes equations, Numer. Math., 44(1984), 201-217.
    [10]
    Guo Ben-yu, Spectral-difference method for solving two-dimensional vorticity equations, J.Comput. Math., 6(1988), 238-257.
    [11]
    Guo Ben-yu and Cao Wei-ming, Spectral-finite element method for solving two-dimensional vorticity equations, Acta Mathematicae Applicatae Sinica, 7(1991), 257-271.
    [12]
    Guo Ben-yu and Cao Wei-ming, Spectral-finite element method for solving three-dimensional vorticity equations, J. Greek Math. Soc., 32(1990), 258-280.
    [13]
    Guo Ben-yu and Cao Wei-ming, Spectral-finite element method for solving two-dimensional Navier-Stokes equation(1988). (unpublished).
    [14]
    Adams, R. A., Sobolev Spaces, Academic Press, New York(1975).
    [15]
    Grisvard, P., Equations differentielles abstraites, Ann. Sci. Ecole Norm. Sup., 4(1969),311-395.
    [16]
    Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam (1978).
    [17]
    Schatz, A., V. Thomee and L. B. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations, Commun. Pure Appl. Math., 33(1980), 265-304.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1918) PDF downloads(634) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return