Citation: | Ma Wen-xiu. A Hierarchy of Liouville Integrable Finite-Dimensional Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 1992, 13(4): 349-357. |
[1] |
Lax,P.D.,A Hamiltonian approach to the KdV and other equations,Nonlinear Evolution Equations,Ed.,M.G.Crandall,Academic Press,New York(1978),207-224.
|
[2] |
Tu,G.Z.,Infinitesimal canonical transformations of generalized Hamiltonian equations,J.Phys.A: Math.Gen.,15(1982),277-285.
|
[3] |
Abraham,R.,J.E.Marsden and T.Ratiu,Manifolds,Tensor Analysis,and Applications,Addison-Wesley Publishing Company,Inc.,Massachusetts(1983).
|
[4] |
Arnold,V.I.,Mathematical Methods of Classical Mechanics,Second(Corrected) Printing,Springer-Verlag,New York(1980).
|
[5] |
Olver,P.J.,Applications of Lie Groups to Differential Equations,Springer-Verlag,New York(1986).
|
[6] |
Moser,J.,Various aspects of integrable Hamiitonian systems,Dynamical Systems(Progress in Mathematics,8),(Ed.,J.Guckenheimer,et al.,Birkhaüser,Boston(1980),233-289.
|
[7] |
Moser,J.,Three integrable Hamiltonian systems connected with isospectral deformations,Advances in Math.,16(1975),197-220.
|
[8] |
Adler,M.,Some finite dimensional integrable systems and their scattering behavior,Commun.Math.Phys.,55(1977),195-230.
|
[9] |
Cao,C.W.,Nonlinearization of the Lax system for AKNS hierarchy,Science in China,A,7(1989),701-707.(in Chinese).
|
[10] |
Zeng,Y.B.and Y.S.Li,Three kinds of constraints of potentials for KdV hierarchy,Acta Math.Sinica,New Series,6,3(1990),257-272.
|
[11] |
Cao,C.W.and X,G.Geng,Classical integrable systems generated through nonlinearization of eigenvalue problems,Nonlinear Physics(Research Reports in Physics),Springer-Verlag,Berlin(1986),68-78.
|
[12] |
Tu,G.Z.,On complete integrability of a large class of finite-dimensional Hamiltonian systems,Advances in Math.(China),20,1(1991),60-74.
|
[13] |
马文秀,一个新的多项式对合系及其经典可积系统,科学通报,34(23)(1989),1770-1774.
|
[14] |
Ma,W.X.,The confocal involutive system and the integrability of the nonlinearized Lax systems of AKNS hierarchy,Nonlinear Physics(Research Reports in Physics),Springer-Verlag,Berlin(1990),79-84.
|
[15] |
曹策问,共焦对合系与一类AKNS特征值问题,河南科学,5(1)(1987),1-10.
|
[1] | LIU Xiaomei, ZHOU Gang, ZHU Shuai. A Highly Precise Symplectic Direct Integration Method Based on Phase Errors for Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 595-608. doi: 10.21656/1000-0887.390249 |
[2] | WEI Yi, DENG Zi-chen, LI Qing-jun, WANG Yan. Effects of Solar Radiation Pressure on Orbits of Space Solar Power Station[J]. Applied Mathematics and Mechanics, 2017, 38(4): 399-409. doi: 10.21656/1000-0887.370309 |
[3] | JIANG Xian-hong, DENG Zi-chen, ZHANG Kai, WANG Jia-qi. A Symplectic Approach for Boundary-Value Problems of Linear Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 2017, 38(9): 988-998. doi: 10.21656/1000-0887.370365 |
[4] | XU Xue-yan, CHEN Hai-bo, ZHANG Hong-bin, DING Guang-tao. Classical Solutions of Motion for Dyon Systems[J]. Applied Mathematics and Mechanics, 2017, 38(9): 1061-1070. doi: 10.21656/1000-0887.380046 |
[5] | LI Qing-jun, YE Xue-hua, WANG Bo, WANG Yan. Nonlinear Dynamic Behavior of the Satellite Rendezvous and Docking Based on the Symplectic Runge-Kutta Method[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1299-1307. doi: 10.3879/j.issn.1000-0887.2014.12.002 |
[6] | SUN Yan, GAO Qiang, ZHONG Wan-xie. Numerical Integration Algorithm of the Symplectic-Conservative and Energy-Preserving Method[J]. Applied Mathematics and Mechanics, 2014, 35(8): 831-837. doi: 10.3879/j.issn.1000-0887.2014.08.001 |
[7] | LI Can-hua, CHEN Chuan-miao. Ultraconvergence for Averaging Discontinuous Finite Elements and Its Applications in Hamiltonian System[J]. Applied Mathematics and Mechanics, 2011, 32(7): 883-894. doi: 10.3879/j.issn.1000-0887.2011.07.011 |
[8] | HOU Guo-lin, Alatancang. Symplectic Eigenfunction Expansion Theorem for the Rectangular Plane Elasticity Problems With Two Opposite Simply Supported[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1181-1190. doi: 10.3879/j.issn.1000-0887.2010.10.005 |
[9] | LI Wen-cheng, DENG Zi-chen. Adaptive Explicit Magnus Numerical Method for Nonlinear Dynamical Systems[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1009-1016. |
[10] | YUAN Yu-bo, PU Dong-mei, LI Shu-min. Bifurcations of Travelling Wave Solutions in Variant Boussinesq Equations[J]. Applied Mathematics and Mechanics, 2006, 27(6): 716-726. |
[11] | XU Zi-xiang, ZHOU De-yun, DENG Zi-chen. Numerical Method Based on Hamilton System and Symplectic Algorithm to Differential Games[J]. Applied Mathematics and Mechanics, 2006, 27(3): 305-310. |
[12] | JIA Yi-feng, CHEN Yu-fu, XU Zhi-qiang. Application of Wu Elimination Method to Constrained Dynamics[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1226-1234. |
[13] | LI Wen-cheng, DENG Zi-chen, HUANG Yong-an. Efficient Numerical Integrators for Highly Oscillatory Dynamic Systems Based on Modified Magnus Integrator Method[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1211-1218. |
[14] | ZHANG Yu-feng, ZHANG Hong-qing. A Family of Integrable Systems of Liouville and Lax Representation, Darboux Transformations for its Constrained Flows[J]. Applied Mathematics and Mechanics, 2002, 23(1): 23-30. |
[15] | FAN En-gui, ZHANG Hong-qing. A New Completely Integrable Liouville’s System, Its Lax Representation and Bi-Hamiltonian Structure[J]. Applied Mathematics and Mechanics, 2001, 22(5): 458-464. |
[16] | CHEN Li-qun. Chaos in Perturbed Planan Non-Hamiltonian Integrable Systems with Slowly-Varying Angle Parameters[J]. Applied Mathematics and Mechanics, 2001, 22(11): 1172-1176. |
[17] | HE Tian-lan. Bifurcations of Invariant Curves of a Difference Equation[J]. Applied Mathematics and Mechanics, 2001, 22(9): 988-996. |
[18] | LI Ji-bin, DUAN Wan-suo. Periodic Stream Lines in the Three-Dimensional Square Cell Pattern[J]. Applied Mathematics and Mechanics, 2001, 22(2): 191-198. |
[19] | Gao Puyun. A New Method for the Construction of Integrable Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 1996, 17(10): 933-938. |
[20] | Dong Guaug-mao, Liu Zeng-rong, Xu Zheng-fan. Stochasticity near Resonances in a kind of Near-lntegrable Hamiltonian Systems Based on Smale Horseshoes[J]. Applied Mathematics and Mechanics, 1992, 13(1): 11-16. |