Citation: | Fu Xin-chu, Chou Huan-wen. Chaotic Behaviour of the General Symbolic Dynamics[J]. Applied Mathematics and Mechanics, 1992, 13(2): 103-109. |
[1] |
Devaney,R.,An Introduction to Chaotic Dynamical Systems,Addison-Wesley Pubiishing Company,Inc,(1987).
|
[2] |
傅新楚,非紧致符号空间上移位映射的Li-Yorke浑沌性态,非线性动力学研讨会交流论文,中国科技大学(1990).
|
[3] |
傅新楚,自映射的无穷阶移位不变集,同上,并刊于《青年论文荟萃—常微分方程专辑》,科学出版社(1991).
|
[4] |
Wiggins,S,,Global Bifurcations and Chaos:Analytical Methods,Springer Verlag(1988).
|
[5] |
张筑生,《微分动力系统原理》,科学出版社(1987).
|
[6] |
郭友中、周焕文、分叉、怪引子、阵发性与浑沌,力学进展,14(3)(1984),255-274.
|
[7] |
Li,T,Y.and J.A,Yorke. Period three implies chaos,Amer. Math.Monthly,82(1975),985-992.
|
[8] |
周作领.转移自映射的紊动性状,数学学报.30(2)(1979),284-288.
|
[9] |
周作领,紊动与全紊动.科学通报,(4)(1987),248-250.
|
[10] |
Zhou,Z.L.(周作领).The topological Markov chain,Acta Math,Sinica(New Series),4(4)(1988),330-337.
|
[1] | XIONG Hui, YANG Guang. Dynamics of a Complex-Valued Heat Equation[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1055-1062. doi: 10.3879/j.issn.1000-0887.2014.09.011 |
[2] | CHENG Gui-fang, MU Xiao-wu. Finite-Time Stability With Respect to a Closed Invariant Set for a Class of Discontinuous Systems[J]. Applied Mathematics and Mechanics, 2009, 30(8): 1003-1008. doi: 10.3879/j.issn.1000-0887.2009.08.014 |
[3] | ZHANG Gang, LIU Zeng-rong, MA Zhong-jun. Generalized Synchronization of Continuous Dynamical System[J]. Applied Mathematics and Mechanics, 2007, 28(2): 141-146. |
[4] | CHEN Fang-yue, CHEN Feng-juan. Model Shift and Strange Attractor on MLbius Strip[J]. Applied Mathematics and Mechanics, 2003, 24(7): 747-754. |
[5] | SUN JI-tao, ZHANG Yin-ping, LIU Yong-qing, DENG Fei-qi. Exponential Stability of Interval Dynamical System With Multidelay[J]. Applied Mathematics and Mechanics, 2002, 23(1): 87-91. |
[6] | Ma Junhai, Chen Yushu, Liu Zengrong. The Matric Algorithm of Lyapunov Exponent for the Experimental Date Obtained in Dynamic Analysis[J]. Applied Mathematics and Mechanics, 1999, 20(9): 919-927. |
[7] | Han Qiang, Zhang Shanyuan, Yang Guitong. The Study on the Chaotic Motion of a Nonlinear Dynamic System[J]. Applied Mathematics and Mechanics, 1999, 20(8): 776-782. |
[8] | Wang Zongxing, Fan Xianling, Zhu Zhengyou. Inertial Manifolds for Nonautonomous InfiniteDimensional Dynamical Systems[J]. Applied Mathematics and Mechanics, 1998, 19(7): 649-657. |
[9] | Zhang Wei, Chen Yushu. Adjoint operator Method and Normal Forms of Higher order for Nonlinear Dynamical System[J]. Applied Mathematics and Mechanics, 1997, 18(5): 421-432. |
[10] | Liao Shantao. Notes on a study of vector Bundle Dynamical systems(Ⅱ)──Part 2[J]. Applied Mathematics and Mechanics, 1997, 18(5): 395-412. |
[11] | Liao Shantao. Notes on a Study of Vector Bundle Dynamical Systems(Ⅱ)──Part1[J]. Applied Mathematics and Mechanics, 1996, 17(9): 759-771. |
[12] | Liao Shantao. Notes on a Study of Vector Bundle Dynamical Systems(Ⅰ)[J]. Applied Mathematics and Mechanics, 1995, 16(9): 757-766. |
[13] | Zhu Chang-jiang. Intial Value Problem for High Dimensional Dynamic Systems[J]. Applied Mathematics and Mechanics, 1995, 16(3): 263-266. |
[14] | Naseer Ahmed. Integral Invariants of a Holonomic Dynamical System Naseer Ahmed[J]. Applied Mathematics and Mechanics, 1994, 15(8): 719-727. |
[15] | Li Jia-chun. Turbulent Coherent Structure and Dynamic System[J]. Applied Mathematics and Mechanics, 1991, 12(2): 171-176. |
[16] | Yuan Xiao-feng, Guo Rui-hai. Coexistence of the Chaos and the Periodic Solutions in Planar Fluid Flows[J]. Applied Mathematics and Mechanics, 1991, 12(12): 1067-1074. |
[17] | Li Li, Ren Bao-jing. On Self-Excited Oscillation of Dynamic Systems with Gap[J]. Applied Mathematics and Mechanics, 1988, 9(8): 685-692. |
[18] | Liu Zheng-rong, Li Ji-bin, Lin Chang. Chaotic Phenomenon in Catalytic Reaction[J]. Applied Mathematics and Mechanics, 1986, 7(1): 43-49. |
[19] | Liu Zeng-rong, Yao Wei-guo, Zhu Zhao-xuan. Road to Chaos for a Soft Spring System under Weak Periodic Disturbance[J]. Applied Mathematics and Mechanics, 1986, 7(2): 103-108. |
[20] | C. S. Hsu, Xu Jian-xue. The Global Analysis of Higher Order Non-linear Dynamical Systems and the Application of Cell-to-Cell Mapping Method[J]. Applied Mathematics and Mechanics, 1985, 6(11): 953-962. |