Guo You-zhong, Liu Zeng-rong, Jiang Xia-mei, Han Zhi-bin. Higher-Order Melnikov Method[J]. Applied Mathematics and Mechanics, 1991, 12(1): 19-30.
Citation: Guo You-zhong, Liu Zeng-rong, Jiang Xia-mei, Han Zhi-bin. Higher-Order Melnikov Method[J]. Applied Mathematics and Mechanics, 1991, 12(1): 19-30.

Higher-Order Melnikov Method

  • Received Date: 1989-11-30
  • Publish Date: 1991-01-15
  • In this paper the Melnikoy method has been generalized to the case of higher-order by finding an explicit expression for second-order subharmonic Melnikov function, and it has been proved that the existence of subharmonic or hyper-subharmonic of a system can be proved under certain conditions by use of second-order Melnikov function.
  • loading
  • [1]
    Melnikov V. K., Trans..Moscov. Math. Soc. 12 (1963),1-56.
    [2]
    Guckenheimer J., P. J. Holmes,Nonlinear Oscillations, Dynamical System and Bifurcation of Vector Fields, Springer-Veriay (1983).
    [3]
    Chow, S. N., J. K. Hale, and J. Mallet-Paret, J. Diff.Eq.37, 3(1980), 351-373.
    [4]
    Keener J. P,Study Appl.Math., 67, 1 (1982), 25-44.
    [5]
    刘曾荣、姚伟国、朱照宣,应用数学和力学,7, 2 (1986), 103-108
    [6]
    钱敏、潘涛、刘曾荣,物理学报,36, 2(1987), 149-156.
    [7]
    Bareone A. and G. Paterno, Physics and Application of the Jorsephson Effect, Interscience Publication(1982).
    [8]
    Stoker J.J., Nonlinear Vibration in Mechanical and Electrical System, Interscience, New York(1950).
    [9]
    钱敏、潘涛、沈文仙,平面Hamilton系统在周期小扰动下次调和解的存在性和稳定性.数学学报(待发表).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2158) PDF downloads(518) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return