Yua Tian-quan. Torsion of Elastic Shaft of Revolution Embedded in an Elastic Half Space[J]. Applied Mathematics and Mechanics, 1990, 11(6): 489-498.
Citation: Yua Tian-quan. Torsion of Elastic Shaft of Revolution Embedded in an Elastic Half Space[J]. Applied Mathematics and Mechanics, 1990, 11(6): 489-498.

Torsion of Elastic Shaft of Revolution Embedded in an Elastic Half Space

  • Received Date: 1989-11-10
  • Publish Date: 1990-06-15
  • The problem of torsion of elastic shaft of revolution embedded in an elastic half space is studied by the Line-Loaded Integral Equation Method (LLIEM). The problem is reduced to a pair of one-dimensional Fredholm integral equations of the first kind due to the distributions of the fictitious loads "Point Ring Couple (PRC)"and "Point Ring Couple in Half Space (PRCHS)"on the axis of symmetry in the interior and external ranges of the shaft occutied respectively. The direct discrete solution of this integral equations may be unstable, i.e. an ill-posed case occurs. In this paper, such an ill-posed Fredholm integral equation of first kind is replaced by a Fredholm integral equation of the second kind with small parameter, which provides a stable solution. This method is simpler and easier to carry out on a computer than the Tikhonov's regularization method for ill-posed problems. Numerical examples for conical, cylindrical, conical-cylindrical, and parabolic shafts are given.
  • loading
  • [1]
    云天铨,嵌在弹性半空间的刚性变直径圆轴的扭转,应用数学和力学,9, 5 (1988), 411-416.
    [2]
    Karasudhi,K.,R.K.N.D.Rajapake and B.Y. Hwang, Torsion of a long cylindrical elastic bar partially embedded in a layered elastic half space, Int. J. of Solids and Structures, 20,1(1984),1-11.
    [3]
    Delves,L.M.and J.Walsh, Numerical Solution of Integral Equations, Oxford, Clarendon(1974),182-184.
    [4]
    Lukas, M.A., Regularization,eds.R.S.Anderssen, F.R.de Hoog and M. A.Lukas,The Application and Numerical Solution of Integral Equations, Sijthoff and Noordhoff, Alphen aun denRijn, The Netherlands(1980),151-181.
    [5]
    Schock,E., On the asymptotic order of accuracy of Tikhonov regularization, J. of Optim Theory and Appl., 44,1(1984),95-104.
    [6]
    Morozov, V.A., Methods for Solving Incorrectly Posed Problem, Springer-Verlag, New York(1984).
    [7]
    Nashed, M.Z. and G.Wahba, Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind, Mathematics of Computation,28,125(1974),69-80.
    [8]
    云天铨,点圆力偶作用于弹性全空间的解及其应用,华中工学院学报,总40期(1982), 98-108.
    [9]
    云天铨,回转体扭转问题的一个积分方程解法,华中工学院学报,3 (1979,97-104, MR*81Ms73028, (English edition, J, H, I, T 1 (1979), 82-97.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2010) PDF downloads(472) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return