R. G. Moukharliamov, Liu Wei-jian. The Equations of Motion of a Mechanical System in Matrix Form[J]. Applied Mathematics and Mechanics, 1989, 10(10): 901-908.
Citation:
R. G. Moukharliamov, Liu Wei-jian. The Equations of Motion of a Mechanical System in Matrix Form[J]. Applied Mathematics and Mechanics, 1989, 10(10): 901-908.
R. G. Moukharliamov, Liu Wei-jian. The Equations of Motion of a Mechanical System in Matrix Form[J]. Applied Mathematics and Mechanics, 1989, 10(10): 901-908.
Citation:
R. G. Moukharliamov, Liu Wei-jian. The Equations of Motion of a Mechanical System in Matrix Form[J]. Applied Mathematics and Mechanics, 1989, 10(10): 901-908.
The Equations of Motion of a Mechanical System in Matrix Form
1.
Patrice Lumumba University of Peoples' Friendship, Moscow;
2.
Shanghai University of Technology, Shanghai
Received Date: 1988-12-14
Publish Date:
1989-10-15
Abstract
This work recommends methods of construction of equations of motion of mechanical systems in matrix form.The use of a matrix form allows one to write an equation of dynamics in compact form,convenient for the in vestigation of multidimensional mechanical systems with the help of computers.Use is made of different methods of constructing equations of motion,based on the basic laws of dynamics as well as on the principles of D'Alambert-Le range,Hamilton-Ostrogradski and Gauss.
References
[1]
Мухарлямов Р.Г.,Об уравниях движения механических систем,Дuфференццалъные Уравнця,19,12(1983),2048-2056.
[2]
Greenwood,Donald T.,Classical Dynamics,Prentiec Hall,Inc.,Englewood Cliffs,N.J.(1977),337.
Relative Articles
[1] REN Limei. The First Passage Failure Probabilities of Dynamical Systems Based on the Failure Domain Reconstruction and Important Sampling Method [J]. Applied Mathematics and Mechanics, 2019, 40(4): 463-472. doi: 10.21656/1000-0887.390169
[2] XU Xiao-ming, ZHONG Wan-xie. Symplectic Integration for Multibody Dynamics Based on Quaternion Parameters [J]. Applied Mathematics and Mechanics, 2014, 35(10): 1071-1080. doi: 10.3879/j.issn.1000-0887.2014.10.001
[3] CHEN Yu-shu, YANG Cai-xia, WU Zhi-qiang, CHEN Fang-qi. 1:2 Internal Resonance of Coupled Dynamic System With Quadratic and Cubic Nonlinearities [J]. Applied Mathematics and Mechanics, 2001, 22(8): 817-824.
[4] WANG Li-li, ZHANG Jing-hui. Identification of Nonlinear Dynamic Systems:Time-Frequency Filtering and Skeleton Curves [J]. Applied Mathematics and Mechanics, 2001, 22(2): 182-190.
[5] Zhang Yi, Mei Fengxiang. Noether’s Theory of Mechanical Systems With Unilateral Constraints [J]. Applied Mathematics and Mechanics, 2000, (1): 53-60.
[6] Liu Rongwan, Fu Jingli. Lie Symmetries and Conserved Quantities of Nonconservative Nonholonomic Systems in Phase Space [J]. Applied Mathematics and Mechanics, 1999, 20(6): 597-601.
[7] Mei Fengxiang. Lie Symmetries and Conserved Quantities of Holonomic Variable Mass Systems [J]. Applied Mathematics and Mechanics, 1999, 20(6): 592-596.
[8] Zhang Yi, Mei Fengxiang. Equations of Motion for Nonholonomic Mechanical Systems with Unilateral Constraints [J]. Applied Mathematics and Mechanics, 1999, 20(1): 55-62.
[9] Luo Shaokai, Guo Yongxin, Mei Fengxiang. Connections and Geodesic Characteristic of Equations of Motion for Constrained Mechanical Systems [J]. Applied Mathematics and Mechanics, 1998, 19(9): 779-783.
[10] Luo Shaokai. Relativistic Variation Principles and Equation of Motionfor Variable Mass Controllable Mechanical Systems [J]. Applied Mathematics and Mechanics, 1996, 17(7): 645-653.
[11] Zhu Hai-ping, Mei Feng-xiang. On the Stability 0f Nonholonomic Mechanical Systems with Respect to Partial Variables [J]. Applied Mathematics and Mechanics, 1995, 16(3): 225-233.
[12] Luo Yao-huang, Zhao Yong-da. Routh’s Equations for General Nonholonomic Mechanical Systems of Variable Mass [J]. Applied Mathematics and Mechanics, 1993, 14(3): 267-279.
[13] Mei Feng-xiang. A Field Method for Integrating the Equations of Motion of Nonholonomic Controllable Systems [J]. Applied Mathematics and Mechanics, 1992, 13(2): 165-171.
[14] Gao Pu-yun, Guo Zhong-heng. Lagrange Equation of a Class of Nonholonomic Systems [J]. Applied Mathematics and Mechanics, 1991, 12(5): 397-400.
[15] Gao Pu-yun, Guo Zhong-heng. Lagrange Equation of Another Class of Nonholonomic Systems [J]. Applied Mathematics and Mechanics, 1991, 12(8): 679-684.
[16] Zhao Shi-ying. The Differentia, Geometric Principle of the Nonholonomic Mechanical Systems of Chetaev’s Type [J]. Applied Mathematics and Mechanics, 1986, 7(9): 847-860.
[17] Zhao Guang-kang. Differential Equations of Motion for a Variable-Mass Hoionomic System with a Uniformly Rotating Constraint [J]. Applied Mathematics and Mechanics, 1986, 7(6): 523-531.
[18] Zhao Guan-kang, Zhao Yue-yu. Equations of Motion of Variable Mass in High-Order Non-Holonomic Mechanical System [J]. Applied Mathematics and Mechanics, 1985, 6(12): 1101-1109.
[19] Mei Feng-xiang. Extension of the Mac-Millan’s Equations to Nonlinear Nonholonomic Mechanical Systems [J]. Applied Mathematics and Mechanics, 1984, 5(5): 665-672.
[20] Mei Feng-xiang. Extension of the Whittaker Equations to Non Holonomic Mechanical Systems [J]. Applied Mathematics and Mechanics, 1984, 5(1): 61-66.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 14.1 % FULLTEXT : 14.1 % META : 84.2 % META : 84.2 % PDF : 1.6 % PDF : 1.6 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 7.2 % 其他 : 7.2 % China : 0.6 % China : 0.6 % 上海 : 1.0 % 上海 : 1.0 % 东莞 : 0.2 % 东莞 : 0.2 % 伦敦 : 0.1 % 伦敦 : 0.1 % 兰州 : 0.2 % 兰州 : 0.2 % 北京 : 2.6 % 北京 : 2.6 % 十堰 : 0.1 % 十堰 : 0.1 % 南京 : 0.5 % 南京 : 0.5 % 南宁 : 0.1 % 南宁 : 0.1 % 南昌 : 0.1 % 南昌 : 0.1 % 台州 : 0.1 % 台州 : 0.1 % 合肥 : 0.2 % 合肥 : 0.2 % 吉安 : 0.1 % 吉安 : 0.1 % 呼和浩特 : 0.1 % 呼和浩特 : 0.1 % 唐山 : 0.2 % 唐山 : 0.2 % 天津 : 0.3 % 天津 : 0.3 % 奥克兰 : 0.3 % 奥克兰 : 0.3 % 宁波 : 0.2 % 宁波 : 0.2 % 宜昌 : 0.1 % 宜昌 : 0.1 % 宣城 : 0.3 % 宣城 : 0.3 % 密蘇里城 : 0.3 % 密蘇里城 : 0.3 % 布加勒斯特 : 0.3 % 布加勒斯特 : 0.3 % 广州 : 0.1 % 广州 : 0.1 % 庆阳 : 0.5 % 庆阳 : 0.5 % 张家口 : 2.2 % 张家口 : 2.2 % 成都 : 0.4 % 成都 : 0.4 % 扬州 : 0.2 % 扬州 : 0.2 % 无锡 : 0.1 % 无锡 : 0.1 % 杭州 : 1.2 % 杭州 : 1.2 % 武汉 : 0.4 % 武汉 : 0.4 % 江门 : 0.3 % 江门 : 0.3 % 沈阳 : 0.2 % 沈阳 : 0.2 % 洛杉矶 : 0.7 % 洛杉矶 : 0.7 % 济南 : 0.2 % 济南 : 0.2 % 深圳 : 0.4 % 深圳 : 0.4 % 滁州 : 0.1 % 滁州 : 0.1 % 漯河 : 0.3 % 漯河 : 0.3 % 石家庄 : 0.5 % 石家庄 : 0.5 % 福州 : 0.1 % 福州 : 0.1 % 秦皇岛 : 0.2 % 秦皇岛 : 0.2 % 累西腓 : 0.3 % 累西腓 : 0.3 % 芒廷维尤 : 8.9 % 芒廷维尤 : 8.9 % 苏州 : 0.3 % 苏州 : 0.3 % 葵涌 : 0.5 % 葵涌 : 0.5 % 西宁 : 65.5 % 西宁 : 65.5 % 西安 : 0.7 % 西安 : 0.7 % 达州 : 0.1 % 达州 : 0.1 % 郑州 : 0.3 % 郑州 : 0.3 % 重庆 : 0.1 % 重庆 : 0.1 % 铁岭 : 0.2 % 铁岭 : 0.2 % 镇江 : 0.1 % 镇江 : 0.1 % 长沙 : 0.3 % 长沙 : 0.3 % 其他 China 上海 东莞 伦敦 兰州 北京 十堰 南京 南宁 南昌 台州 合肥 吉安 呼和浩特 唐山 天津 奥克兰 宁波 宜昌 宣城 密蘇里城 布加勒斯特 广州 庆阳 张家口 成都 扬州 无锡 杭州 武汉 江门 沈阳 洛杉矶 济南 深圳 滁州 漯河 石家庄 福州 秦皇岛 累西腓 芒廷维尤 苏州 葵涌 西宁 西安 达州 郑州 重庆 铁岭 镇江 长沙