Yun Tian-quan. Representation Theorem and One-Iteration Theorem for Fredholm Integral Equation of the First Kind Ax=y[J]. Applied Mathematics and Mechanics, 1989, 10(7): 569-574.
Citation: Yun Tian-quan. Representation Theorem and One-Iteration Theorem for Fredholm Integral Equation of the First Kind Ax=y[J]. Applied Mathematics and Mechanics, 1989, 10(7): 569-574.

Representation Theorem and One-Iteration Theorem for Fredholm Integral Equation of the First Kind Ax=y

  • Received Date: 1988-04-05
  • Publish Date: 1989-07-15
  • In this paper, two theorems are presented. The representation theorem stales: if the Fredholm integral equation of the first kind Ax=y, with bounded L2 kernel, has a uniquesolution , Then ,where .The one-iteration theorem states: can be achieved in one iteration by =x0+g0A*(y-Ax0)if one of the following conditions is satisfied:
  • loading
  • [1]
    Mueller,P.F.and G.O.Reynolds,Image resloration by removal of random media degradations,J.Opt.Soc.Amer.,57(1967),1338-1344.
    [2]
    Andrews,H.C.,A.H.Tescher,and R.P.Kruger,Image processing by digital computer,IEEE Spectrum,2(1972),20-32.
    [3]
    Liskovec,O.A.,Regularization of ill posed problems and a connection with the method of quasi solution,Differencial'nye Uravmcnija,5(1969),1836-1847.
    [4]
    Liht,M.K.,The solution of minimizing a quadratic functional with approximate data,Z.Uycial.Nat.i Mat.Fiz.,19(1969),1004-1014.
    [5]
    Yun Tian-quan,Uniqueness theorem of non-singular itegral equation method,Transactions CSME,10(1986),197-200.
    [6]
    Yun Tian-quan,An integral equation method for solving the torsion problem of revolution bodies,J.H.I.T.,1(1979),82-97. MR 81m;73028.
    [7]
    袁家乐,回转体一旋旋桨组合体之推力减额的一个数值预测方法,中国造船,87(1984)14-21.
    [8]
    Yun Tian-quan,Pile analysis by simple integral equation method,Appl.Math.& Mech.,2,3(1981),331-348. MR 83i:73014.
    [9]
    Pogorzelski,W.,Integral Equations and Their Applications,Vol.1,Pergamon Press,PWN-Polish Scientific Publishers(1966).
    [10]
    Landweber,L.,An iteration formula for Fredholm integral equations of the first kind,Amer.J.Math.,73(1951),615-624.
    [11]
    Diaz,J.B.and F.T.Metcalf,On iteration procedures for equations of the first kind,Ax=y,and Picard's criterion for the existence of a solution,Math.Comput.,24(1970),923-935.
    [12]
    云天铨,Fredholm第一种积分方程Ax=y的最速迭代解法,华中工学院学报,3 (1978),94-98.
    [13]
    Smithies,F.,Integral Equations,Cambridge University Press(1956).
    [14]
    Stakgold,I.,Green's Functions and Boundary Value Problems,John Wiley & Sons,New York(1979).
    [15]
    Baker,C.T.H.,The numerical treatment of integral equations,Clarendon Press,Oxford(1977).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1950) PDF downloads(403) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return