Citation: | Cheng Bao-long. The Continual Differentiate Peak-Unimodal Solutions of Feigenbaum’s Functional Equations[J]. Applied Mathematics and Mechanics, 1989, 10(5): 403-409. |
[1] |
Feigenbaum,M.J.,Quantitative universality for a class of nonlinear transformations,J.Stat.Phys.,19(1978),25.
|
[2] |
郝柏林,分岔、混沌、奇怪吸引子、湍流及其它-关于确定论系统中的内在随机性,物理学进展,3(1983),329.
|
[3] |
朱照宣,非线性动力学中的浑沌,力学进展,2(1980),129.
|
[4] |
杨路、张景中,第二类Feigenbaum函数方程,中国科学A辑,12(1986),1061.
|
[1] | YI Luyan, LIU Guowei. Stability of Stationary Solutions to Micropolar Fluid Equations With Unbounded Delay[J]. Applied Mathematics and Mechanics, 2025, 46(4): 551-562. doi: 10.21656/1000-0887.450300 |
[2] | PANG Naihong, LI Hong. Error Estimates of Mixed Space-Time Finite Element Solutions to Sobolev Equations[J]. Applied Mathematics and Mechanics, 2020, 41(8): 834-843. doi: 10.21656/1000-0887.410053 |
[3] | YAO Qing-liu. Solvability of a Class of Second-Order Quasilinear Boundary Value Problems[J]. Applied Mathematics and Mechanics, 2009, 30(8): 990-996. doi: 10.3879/j.issn.1000-0887.2009.08.012 |
[4] | LI Ji-bin. Exact Traveling Wave Solutions for an Integrable Nonlinear Evolution Equation Given by M. Wadati[J]. Applied Mathematics and Mechanics, 2008, 29(4): 393-397. |
[5] | GUO Li-hui, FAN Tian-you. Solvability on Boundary-Value Problems of Elasyicity of Three-Dimensional Quasicrystals[J]. Applied Mathematics and Mechanics, 2007, 28(8): 949-957. |
[6] | JIANG Wei-hua, GUO Yan-ping, QIU Ji-qing. Solvability of 2n-Order m-Point Boundary Value Problem at Resonance[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1087-1094. |
[7] | DAI Tian-min. Renewal of Basic Laws and Principles for Polar Continuum Theories (Ⅱ)-Micromorphic Continuum Theory and Couple Stress Theory[J]. Applied Mathematics and Mechanics, 2003, 24(10): 998-1004. |
[8] | DAI Tian-min. Renewal of Basic Laws and Principles for Polar Continuum Theories(Ⅰ)-Micropolar Continua[J]. Applied Mathematics and Mechanics, 2003, 24(10): 991-997. |
[9] | WANG Ting-fu, JI Dong-hai, CAO Lian-ying. UGD Property of Musielak-Orlicz Sequence Spaces[J]. Applied Mathematics and Mechanics, 2003, 24(2): 175-184. |
[10] | DAI Tian-min. Restudy of Coupled Field Theories for Micropolar Continua (Ⅱ)──Thermopiezoelectricity and Magnetothermoelasticity[J]. Applied Mathematics and Mechanics, 2002, 23(3): 229-238. |
[11] | DAI Tian-min. Restudy of Coupled Field Theories for Micropolar Continua(I)─Micropolar Thermoelasticity[J]. Applied Mathematics and Mechanics, 2002, 23(2): 111-118. |
[12] | LI Hong-da, YE Zheng-lin, GAO Hang-shan. On the Continuity and Differentiability of a Kind of Fractal Interpolation Function[J]. Applied Mathematics and Mechanics, 2002, 23(4): 422-428. |
[13] | HUANG Yong-nian, HU Xin. Superposition About the 3D Vortex Solutions of the Fluid Dynamic Equation[J]. Applied Mathematics and Mechanics, 2000, 21(12): 1227-1237. |
[14] | Wang Xiangdong. The HLder Continuity of Generalized Solutions of a Class Quasilinear Parabolic Equations[J]. Applied Mathematics and Mechanics, 1998, 19(6): 538-548. |
[15] | Tang Guangsong, Yuan Cunde. Integrable Types of Nonlinear Ordinary DifferentialEquation Sets of Higher 0rders[J]. Applied Mathematics and Mechanics, 1995, 16(9): 821-828. |
[16] | Song Jian-wei. Existence of Positive Fixed Points for Semidifferentiable Semicompact 1-Set-Contractions[J]. Applied Mathematics and Mechanics, 1992, 13(7): 613-617. |
[17] | Tane Guang-song, Dong Ju-qing. Integrable Types of Nonlinear Ordinary Differential Equations of Higher-Orders[J]. Applied Mathematics and Mechanics, 1991, 12(11): 1029-1036. |
[18] | Li Hong-xiang, Z. F. Stare. Several Classes of integrable Nonlinear Ordinary Differential Equations(Ⅰ)——First-Order Equations[J]. Applied Mathematics and Mechanics, 1990, 11(3): 247-252. |
[19] | Li Hong-xiang. Several Classes of Integrable Nonlinear Ordinary Differential Equations (Ⅱ)——Higher-Order Equations[J]. Applied Mathematics and Mechanics, 1990, 11(6): 521-527. |
[20] | Chen Song-qiang, Chou Kuan-wen. Inf-Dif-Stability of Oblique Perturbation[J]. Applied Mathematics and Mechanics, 1989, 10(9): 767-772. |