Citation: | Lin Zong-chi, Lin Su-rong. Singularly Perturbed Phenomena of Semilinear Second Order Systems[J]. Applied Mathematics and Mechanics, 1988, 9(12): 1065-1072. |
[1] |
Chang, K.W. and F.A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Applications, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1984).
|
[2] |
O'Malley, R.E., Introduction to Singular Perturbation, Academic Press, New York, London (1974).
|
[3] |
章国华、林宗池,非线性边值的奇摄动,应用数学和力学,5, 5 (1984), 603-612.
|
[4] |
Kelley, W.G., A nonllnear singular perturbation problem for second order systems, SIAM J. Math. Anal., 10, 1 (1979), 32-37.
|
[5] |
Howes. F.A., Singularly perturbed semilinear systems, Studies in Applied Math., 61 (1979), 185-209.
|
[6] |
O'Donnell, M.A., Boundary and corner layer behavior in singularly perturbed semilinear system of boundary value problem, SIAM, J. Math. Anal., 2 (1984).
|
[7] |
章国华、刘光旭,奇摄动半线性系统的边界层和角层性质,应用数学和力学,5, 3 (1984),337-344.
|
[8] |
Chang, K.W. and Lin Zong-chi, Singular perturbation for a class of semilinear second order systems with perturbation both in boundary and in operator, Acta Mathematica Scientia, 5, 2 (1985), 223-241.
|
[9] |
Kelley, W.G., A geometric method of studying two point boundary value problems for second order systems, Rocky Mountain J. Math., 7 (1977), 251-263.
|