Citation: | Lin Yi-zhong. The Bounded Solution of a Class of Differential-Difference Equation of Advanced Type and Its Asymptotic Behavior[J]. Applied Mathematics and Mechanics, 1988, 9(6): 534-542. |
[1] |
Doss,S.and S.K.Nasr,On the functional equation dy/dx=f(x,y(x),y(x+h)),h>0,Amer.J.Math.,75(1953),713-716.
|
[2] |
Sugiyama,S.,On some problems of functional-differential equations With advanced argument,Proc.U.S.Japan seminar Differential and Functional Equations,Minnesota,June(1967),Benjamin,New York(1967),367-382.
|
[3] |
Anderson,C.H.,Asymptotic oscillation results for solutions to first-order nonlinear differential-difference equations of advanced type,J.Math.Anal.Appl.,24(1968),430-439.
|
[4] |
Kato,T.and J.B.Mcleod,The functional-differential equation y'(x)=ay(λx)+by(x),Bull.Amer.Math.Soc.,77(1971),891-937.
|
[5] |
Kusano,T.and H.Onose,Nonlinear oscillation of second order functional differential equations with advanced argument,J.Math.Soc.Japan,29(1977),541-559.
|
[6] |
Onose,H.,Oscillatory properties of the first order differential inequalities with deviating arguments,Funkcial.Ekvac.,26(1983),189-195.
|
[7] |
郑祖麻,林宜中,具超前变元微分方程的基本存在性定理,福建师范大学学报(自然科学版),2(1983),17-24.
|
[8] |
林宜中,具超前变元微分方程的几个问题,福建师范大学学报(自然科学版),1(1986),9-16.
|