Jiang Xin-yao. The Steiner Problem on a Surface[J]. Applied Mathematics and Mechanics, 1987, 8(10): 911-916.
Citation: Jiang Xin-yao. The Steiner Problem on a Surface[J]. Applied Mathematics and Mechanics, 1987, 8(10): 911-916.

The Steiner Problem on a Surface

  • Received Date: 1986-02-26
  • Publish Date: 1987-10-15
  • In this paper we generalize the Steiner problem on planes to general regular surfaces. The main result is: Theorem 1. If A,B,C are three points on a regular surface Σ and if another point P on Σ such that the sum of the lengths of the smooth arcs reaches the minimum, then the angles formed by every two arcs at P are all 120°.
  • loading
  • [1]
    Courant,R.and H.Robbins,What Is Mathematics?Chapter 7,§5,Oxford University Press,New York(1964).
    [2]
    克莱因,M.,《古今数学思想》,第三卷,科技出版社(1981), 246-250.
    [3]
    Melzak.Z.A.,On the problem of Steiner,Ganad Math.Bull.,4(1961),143-148.
    [4]
    Pollak,H.O.,Some remarks on the Steiner problem,J. Combinational Thy.,A,24(1978),278-295.
    [5]
    王凯宁,凸n边形内Fermat点问题的初等证明,中国科学技术大学学报,11, 4 (1981), 139-141.
    [6]
    黄光明,最短网络,运筹学杂志,2, 2 (1983), 18-25.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1738) PDF downloads(402) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return