[1] | WANG Daohang, SUN Bo, LIU Chunxia, ZHOU Ziyi, LIU Yu. Vertical Vibration Control of Nonlinear Viscoelastic Isolation Systems With Time Delay Feedback[J]. Applied Mathematics and Mechanics, 2025, 46(2): 199-207. doi: 10.21656/1000-0887.450037 |
[2] | ZHANG Kaikai, TAN Xia, DING Hu, CHEN Liqun. Parametric Vibration Responses of Supercritical Fluid-Conveying Pipes in 3∶1 Internal Resonance[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1227-1235. doi: 10.21656/1000-0887.390121 |
[3] | MAO Xiao-ye, DING Hu, CHEN Li-qun. Forced Vibration Responses of Supercritical Fluid-Conveying Pipes in 3∶1 Internal Resonance[J]. Applied Mathematics and Mechanics, 2016, 37(4): 345-351. doi: 10.3879/j.issn.1000-0887.2016.04.002 |
[4] | WU Ji-mei, JING Tao, WANG Yan, LI Yan-feng, XUE Zhi-cheng, WU Qiu-min. Transverse Vibration Control of Moving Printing Membranes With Bending Stiffness[J]. Applied Mathematics and Mechanics, 2015, 36(7): 686-699. doi: 10.3879/j.issn.1000-0887.2015.07.002 |
[5] | TANG You-qi, CHEN Li-qun. Internal-External Combination Resonance of Nonlinear Vibration of in-Plane Translating Viscoelastic Plates[J]. Applied Mathematics and Mechanics, 2013, 34(5): 480-487. doi: 10.3879/j.issn.1000-0887.2013.05.006 |
[6] | YI Zhuang-peng, ZHANG Yong, WANG Lian-hua. Nonlinear Dynamic Response and Bifurcation Analysis of the Elastically Constrained Shallow Arch[J]. Applied Mathematics and Mechanics, 2013, 34(11): 1182-1196. doi: 10.3879/j.issn.1000-0887.2013.11.008 |
[7] | LI Feng-ming, LIU Chun-chuan. Parametric Vibration Stability and Active Control of Nonlinear Beams[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1284-1293. doi: 10.3879/j.issn.1000-0887.2012.11.004 |
[8] | WANG Bo. Asymptotic Analysis on Weakly Forced Vibration of an Axially Moving Viscoelastic Beam Constituted by Standard Linear Solid Model[J]. Applied Mathematics and Mechanics, 2012, 33(6): 771-780. doi: 10.3879/j.issn.1000-0887.2012.06.010 |
[9] | LI Xiao-jun, CHEN Li-qun. Modal Analysis of Coupled Vibration of Belt Drive Systems[J]. Applied Mathematics and Mechanics, 2008, 29(1): 8-12. |
[10] | ZHANG Neng-hui, WANG Jian-jun, CHENG Chang-jun. Complex-Mode Galerkin Approach in Transverse Vibration of an Axially Accelerating Viscoelastic String[J]. Applied Mathematics and Mechanics, 2007, 28(1): 1-8. |
[11] | ZHOU Yin-feng, WANG Zhong-min. Transverse Vibration Characteristics of Axially Moving Viscoelastic Plate[J]. Applied Mathematics and Mechanics, 2007, 28(2): 191-199. |
[12] | HE Yuan-jun, MA Xing-rui, WANG Ben-li. Stable Response of the Low-Gravity Liquid Non-Linear Sloshing in a Circle Cylindrical Tank[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1135-1145. |
[13] | ZHAO Wei-jia, CHEN Li-qun, Jean W Zu. Finite Difference Method for Simulatting Transverse Vibrations of an Axially Moving Viscoelatic String[J]. Applied Mathematics and Mechanics, 2006, 27(1): 21-27. |
[14] | RONG Hai-wu, WANG Xiang-dong, MENG Guang, XU Wei, FANG Tong. Response of Nonlinear Oscillator Under Narrow-Band Random Excitation[J]. Applied Mathematics and Mechanics, 2003, 24(7): 723-729. |
[15] | ZHU Wei-ping, HUANG Qian. Finite Element Displacement Perturbation Method for Geometric Nonlinear Behaviors of Shells of Revolution Overall Bending in a Meridional Plane and Application toBellows(Ⅱ)[J]. Applied Mathematics and Mechanics, 2002, 23(12): 1241-1254. |
[16] | ZHU Wei-ping, HUANG Qian. Finite Element Displacement Perturbation Method for Geometric Nonlinear Behaviors of Shells of Revolution Overall Bending in a Meridional Plane and Application to Bellows(Ⅰ)[J]. Applied Mathematics and Mechanics, 2002, 23(12): 1227-1240. |
[17] | LI Hong-yun, LIU Zheng-xing, LIN Qi-rong. Spherical-Symmetric Steady-State Response of Piezoelectric Spherical Shell Under External Excitation[J]. Applied Mathematics and Mechanics, 2000, 21(8): 852-860. |
[18] | Zhou Ding. An Approximate Solution of Eigen-Frequencies of Transverse Vibration of Rectangular Plates with Elastical Restraints[J]. Applied Mathematics and Mechanics, 1996, 17(5): 433-438. |
[19] | Li Dong. Nonlinear Vibrations of Orthotropic Shallow Shells of Revolution[J]. Applied Mathematics and Mechanics, 1992, 13(4): 313-325. |
[20] | Li Dong. Application of the Modified iteration Method to Nonlinear Postbuckling Analysis of Thin Circular Plates[J]. Applied Mathematics and Mechanics, 1991, 12(12): 1075-1080. |