Shen Hui-chuan. On the General Equation and the General Solution in Problems for Plastodynamics with Rigid-Plastic Material[J]. Applied Mathematics and Mechanics, 1987, 8(1): 43-54.
Citation: Shen Hui-chuan. On the General Equation and the General Solution in Problems for Plastodynamics with Rigid-Plastic Material[J]. Applied Mathematics and Mechanics, 1987, 8(1): 43-54.

On the General Equation and the General Solution in Problems for Plastodynamics with Rigid-Plastic Material

  • Received Date: 1985-11-26
  • Publish Date: 1987-01-15
  • This work is the continuation of the discussion of refs.[1-2].We discuss the dynamics problems of ideal rigid-plastic material in the flow theory of plasticity in this paper.From introduction of the theory of functions of complex variable under Dirac-Pauli representation we can obtain a group of the so-called "general equations"(i.e.have two scalar equations) expressed by the stream function and the theoretical ratio.In this paper we also testify that the equation of evolution for time in plastodynamics problems is neither dissipative nor disperive,and the eigen-equation in plastodynamics problems is a stationary Schrödinger equation,in which we take partial tensor of stress-increment as eigenfunctions and take theoretical ratio as eigenvalues.Thus,We turn nonlinear plastodynamics problems into the solution of linear stationary Schrbdinger equation,and from this we can obtain the general solution of plastodynamics problems with rigid-plastic material.
  • loading
  • [1]
    沈惠川,理想塑性问题中的一般方程、双调和方程和本征方程,应用数学和力学,7.1(1986)61-72,
    [2]
    沈惠川,理想塑性力学问题的通解,自然杂志,8,11(1985),847-848.
    [3]
    杨桂通、熊祝华,《塑性动力学》,清华大学出版社(1984),276-277.
    [4]
    钱伟长,稼变分法及有限元》(上册),科学出版社(1980),578-598.
    [5]
    钱伟长,《广义变分原理》,知识出版社(1985),276-304.
    [6]
    鹜津久一郎(Washizu.K,),塑性论乡,岩波奢店(1957);中译本,《塑性论》,上海科学技术出版社(1961).
    [7]
    Kachanov,L.M.,Foundations of the Theory of Plasticity,North-Holland(1971).
    [8]
    Илюшин А.А.,Пласмцнносмо,Гостехиздат.
    [9]
    Hill,R.,The Mathematical Theory of Plasticity,Oxford(1956).中译本,《塑性数学理论》,王仁等译,科学出版社(1966).
    [10]
    Hodge,P.G.,Plastic Analysis of Structures,McGraw-Hill(1959).
    [11]
    Johnson,W.and P.B.Mellor,Engineering Plasticity,VNR(1973).
    [12]
    Martin,J.B.,Plasticity:Fundamentals General Results,MIT Press(1975).
    [13]
    Nadai,A.,Theory of Flow and Fracture of Solids,McGraw-Hill(1950).
    [14]
    Olszak,W.,Z.Mróz and P.Perzyna,Recent Trenftls in the Development of the Theory of Plasticity,pergamon(1963).
    [15]
    Prager,W.and P.G.Hodge,Theory of Perfectly Plastic Solids,John Wiley(1951).
    [16]
    Save,M.A.and C.E.Massonnet,Plastic analysis and design of plates,shells and disks,NHPC(1972).
    [17]
    Sawczuk,A.and T.Jaeger,Grenztragfàhigkeits Theorie der Platten,Springer-Verlag(1963).
    [18]
    Slater,R.A.C.,Engineering Plasticity,McMillan Press,LTD(1977).
    [19]
    Von Mises R.,Mechanik der festen Korper in plastich-deformablen Zuständ,Den Gesellsch.der Wissensch.Zu Gottingen,Math-phys.Klasses.H.4(1913),582.
    [20]
    Djrac,P.A.M.,The Principles of Quantum Mechanics,Oxford(1958).
    [21]
    Flügge,S.,Practical Quantum Mechanics,Springer-Verlag(1974).
    [22]
    Symonds,P.S.,On the general equations of problems of axial Symmetry in the theory of plasticity,Quar.Appl.Math.,6,4(1949),448-452.
    [23]
    沈惠申,理想塑性轴对称问题的一般方程,应用数学和力学,5,4(1984),577-582,
    [24]
    凌鸿荪,轴对称塑性变形问题,物理学报,1,2(1954),89-104,
    [25]
    沈惠川,Dirac-Pauli表象的复变函数理论及其在流体力学中的应用(I),应用数学和力学,7,4(1986),365-382,
    [26]
    沈惠川,Navier-Stokes方程的精确解-Dirac-Pauli表象的复变函数理论及其在流体力学中的应用(Ⅰ),应用数学和力学,7,6(1986),517-522,
    [27]
    沈惠川,三维非定常等嫡流中的Chaplygin方程-Dirac-Pauli表象的复变函数理论及其在流体力学中的应用(Ⅰ),应用数学和力学,7,8(1986),703-712.
    [28]
    沈惠川,磁流体力学方程组的解-Dirac-Pauli表象的复变函数理论及其在流体力学中的应用
    [29]
    (F),应用数学和力学,7,9(1986),801-811,
    [30]
    朝永振一郎(Tomonaga.S.),《量子力学》,みすす書房(1978).
    [31]
    湯川秀榭(Yukawa,H,),《量子力学》,岩波書店(1978).
    [32]
    Landau,L.D.and E.M.Lifshitz,(Ландау Л.Д,и Е.М.ЛиФШиц.),Quantum Mechanics,Addison-Wesley,Reading,Mass(1958).中译本,《量子力学》,严肃译,人民教育出版社(1980).
    [33]
    Böhm,D,《量子理论》,侯德彭译,商务印书馆(1982).
    [34]
    Schiff,L,I,量子力学》,方励之校,人民教育出版社(1982).
    [35]
    沈惠川,动力应力函数张量,应用数学和力学,3,6(1982),829-834,
    [36]
    沈惠川,动力应力函数张量及弹性静力学的通解,中国科学技术大学学报,14,增刊1,JCUST 84016(1984),95-102,
    [37]
    沈惠川,弹性动力学的通解,应用数学和力学,6,9(1985),791-796;自然杂志,7,8(1984),633-634;7,10(1984),756.
    [38]
    沈惠川,单色弹性波谱的分裂,应用数学和力学,5,4(1984),541-551,
    [39]
    沈惠川,弹性基上的薄板在侧向动载荷、中面力和外场联合作用下的小挠度弯曲,应用数学和力学,5,6(1984),817-827
    [40]
    沈惠川,弹性大烧度问题von Karman方程与量子本征值问题Schrodinger方程的关系,应用数学和力学,6,8(1985),711-723,
    [41]
    沈惠川,再论弹性大挠度问题von Kármán方程与量子本征值问题Schrödinger方程的关系,应用数学和力学(待发表).
    [42]
    沈惠川,薄壳理论中的Schrödinger方程,应用数学和力学,6,10(1985),887-900.
    [43]
    沈惠川,正交各向异性板壳理论中的Schrödinger方程,应用数学和力学,(待发表).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1950) PDF downloads(579) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return