GU Tong-xiang, CHI Xue-bin, LIU Xing-ping. AINV and BILUM Preconditioning Techniques[J]. Applied Mathematics and Mechanics, 2004, 25(9): 927-934.
Citation: GU Tong-xiang, CHI Xue-bin, LIU Xing-ping. AINV and BILUM Preconditioning Techniques[J]. Applied Mathematics and Mechanics, 2004, 25(9): 927-934.

AINV and BILUM Preconditioning Techniques

  • Received Date: 2002-05-28
  • Rev Recd Date: 2004-03-30
  • Publish Date: 2004-09-15
  • It was proposed that a robust and efficient parallelizable preconditioner for solving general sparse linear systems of equations,in which the use of sparse approximate inverse(AINV) techniques in a multi-level block ILU (BILUM) preconditioner were investigated.The resulting preconditioner re tains robustness of BILUM preconditioner and has two advantages over the standard BILUM preconditioner:the ability to control sparsity and increased parallelism.Numerical experiments are used to show the effectiveness and efficiency of the new preconditioner.
  • loading
  • [1]
    Saad Y.Iterative Methods for Sparse Linear Systems[M].New York:PWS Publishing, 1996.
    [2]
    Golub G H,van der Vorst H A.Closer to the solution: iterative linear solver[A].In:Duff I S,Watson G A Eds.The State of the Art in Numerical Analysis[C]:Oxford: Clarendon Press,1997,63—92.
    [3]
    Saad Y,ZHANG Jun.BILUM: block versions of multi-elimination and multi-level ILU preconditioner for general sparse linear systems[J].SIAM J Sci Comput,1999,20(6):2103—2121. doi: 10.1137/S106482759732753X
    [4]
    Benzi M,Tuma M.A sparse approximate inverse preconditioner for nonsymmetric linear systems[J].SIAM J Sci Comput,1998,19(3):968—994. doi: 10.1137/S1064827595294691
    [5]
    Chan T F.TANG Wei-pai,Wan W L.Wavelet sparse approximate inverse preconditioners[J].BIT, 1997,37(3):644—660. doi: 10.1007/BF02510244
    [6]
    Chow E,Saad Y.Approximate inverse techniques for block-partitioned matrices[J].SIAM J Sci Comput,1997,18(6):1657—1675. doi: 10.1137/S1064827595281575
    [7]
    Chow E,Saad Y.Approximate inverse preconditioner via sparse-sparse iterations[J].SIAM J Sci Comput,1998,19(3):995—1023. doi: 10.1137/S1064827594270415
    [8]
    Gould N I M.Scott J A.Sparse approximate-inverse preconditioners using norm minimization techniques[J].SIAM J Sci Comput,1998,19(2):605—625. doi: 10.1137/S1064827595288425
    [9]
    Grote M,Huckle T.Parallel preconditioning with sparse approximate inverses[J].SIAM J Sci Comput,1997,18(3):838—853. doi: 10.1137/S1064827594276552
    [10]
    Saad Y.ILUT: a dual threshold incomplete ILU preconditioner[J].Numer Linear Algebra Appl,1994,1(4):387—402. doi: 10.1002/nla.1680010405
    [11]
    TANG Wei-pai,Wan W L.Sparse approximate inverse smoother for multigrid[J].SIAM J Matrix Anal Appl,2000,21(4):1236—1252. doi: 10.1137/S0895479899339342
    [12]
    Saad Y,ZHANG Jun.Enhanced multi-level block ILU preconditioning strategies for general linear systems[J].J Comput Appl Math,2001,130(1/2):99—118. doi: 10.1016/S0377-0427(99)00388-X
    [13]
    ZHANG Jun.Sparse approximate inverse and multilevel block ILU preconditioning techniques for general sparse matrices[J].Appl Numer Math,2000,35(1):67—86. doi: 10.1016/S0168-9274(99)00047-1
    [14]
    Benzi M,Tuma M.A comparative study of sparse approximate inverse preconditioners[J].Appl Numer Math,1999,30(2/3):305—340. doi: 10.1016/S0168-9274(98)00118-4
    [15]
    Benzi M,Meyer C D,Tuma M.A sparse approximate inverse preconditioner for the conjugate gradient method[J].SIAM J Sci Comput,1996,17(5):1135—1149. doi: 10.1137/S1064827594271421
    [16]
    Benzi M,Cullum J K,Tuma M.Robust approximate inverse preconditioning for the conjugate gradient method[J].SIAM J Sci Comput,2000,22(4):1318—1332. doi: 10.1137/S1064827599356900
    [17]
    Benzi M,Tuma M.Orderings for factorized sparse approximate inverse preconditioners[J].SIAM J Sci Comput,2000,21(5):1851—1868. doi: 10.1137/S1064827598339372
    [18]
    Kolotina L Y,Yeremin A Y.Factorized sparse approximate inverse preconditioningⅠ: theory[J].SIAM J Matrix Anal Appl,1993,14(1):45—58. doi: 10.1137/0614004
    [19]
    Saad Y.ILUM:a multi-elimination ILU preconditioner for general sparse matrices[J].SIAM J Sci Comput,1996,17(4):830—847. doi: 10.1137/0917054
    [20]
    Saad Y,Sosonkina M,ZHANG Jun.Domain decomposition and multi-level type techniques for general sparse linear systems[A].In:Mandel J,Farhat C,Cai X C,Eds.Domain Decomposition Methods 10[C].number 218 in Contemporary Mathematics, Providence, RI, AMS,1998,174—190.
    [21]
    Saad Y.A flexible inner-outer preconditioned GMRES algorithm[J].SIAM J Sci Comput,1993,14(2):461—469. doi: 10.1137/0914028
    [22]
    Saad Y,ZHANG Jun.BILUTM:a domain-based multi-level block ILUT preconditioner for general linear systems[J].SIAM J Matrix Anal Appl,1999,21(1):279—299. doi: 10.1137/S0895479898341268
    [23]
    ZHANG Jun.On convergence of iterative methods with a fourth-order compact scheme[J].Appl Math Lett,1997,10(2):49—55.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2700) PDF downloads(1033) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return