ZHOU Xiao-ping, WANG Jian-hua, ZHANG Yong-xing, HA Qiu-ling. Analysis of the Localization of Damage and the Complete Stress-Strain Relation for Mesoscopic Heterogeneous Rock Under Uniaxial Tensile Loading[J]. Applied Mathematics and Mechanics, 2004, 25(9): 943-950.
Citation: ZHOU Xiao-ping, WANG Jian-hua, ZHANG Yong-xing, HA Qiu-ling. Analysis of the Localization of Damage and the Complete Stress-Strain Relation for Mesoscopic Heterogeneous Rock Under Uniaxial Tensile Loading[J]. Applied Mathematics and Mechanics, 2004, 25(9): 943-950.

Analysis of the Localization of Damage and the Complete Stress-Strain Relation for Mesoscopic Heterogeneous Rock Under Uniaxial Tensile Loading

  • Received Date: 2002-07-15
  • Rev Recd Date: 2004-03-15
  • Publish Date: 2004-09-15
  • The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads.A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irreversible changes of their microscopic structures due to microcrack growth.The complete stress-strain relation including linear elasticity,nonlinear hardening,rapid stress drop and strain softening was obtained.The influence of all microcracks with different sizes and orientations were introduced into the constitutive relation by using the probability density function describing the distribution of orientations and the probability density function describing the distribution of sizes.The influence of Weibull distribution describing the distribution of orientations and Rayleigh function describing the distribution of sizes on the constitutive relation were researched.Theoretical predictions have shown to be consistent with the experimental results.
  • loading
  • [1]
    Nova R, Zaninetti A. An investigation into the tensile behavior of a Schistose rock[J].Int J Rock Mech Sci Geomech Abstr,1990,27(4):231—242.
    [2]
    Okubo S, Jin F, Akiyama M. Loading-rate dependency of uniaxial and indirect tensile strength[J].Journal of the Mining and Materials Processing Institute of Japan,1993,109(11):865—869. doi: 10.2473/shigentosozai.109.865
    [3]
    Okubo S, Fukui K. Complete stress-strain curves for various rock types in uniaxial tension[J].International Journal of Rock Mechanics and Mining Sciences,1996,33(6):549—556. doi: 10.1016/0148-9062(96)00024-1
    [4]
    金丰年.岩石的非线性流变[M].南京:河海大学出版社,2001.
    [5]
    Simo J C, Ju J W.Strain-and stress-based continuum damage models [J].Int J Solids Struct,1987,23(7):821—840. doi: 10.1016/0020-7683(87)90083-7
    [6]
    Ortiz M. A constitutive theory for the inelastic behavior of concrete[J].Mech Mater,1985,4(1):67—93. doi: 10.1016/0167-6636(85)90007-9
    [7]
    Budiansky B, O'Connell R J. Elastic moduli of a cracked solids[J].Int J Solids Struct,1976,12(2):81—79. doi: 10.1016/0020-7683(76)90044-5
    [8]
    Sumarac D, Krajcinovic D. Self-consistent model for microcrack-weakened solids[J].Mechanics of Materials,1987,6(1):39—52. doi: 10.1016/0167-6636(87)90021-4
    [9]
    Ju J W. On two-dimensional self-consistent micromechanical damage models for brittle solids[J].International Journal of Solids and Structures,1991,27(2):227—258. doi: 10.1016/0020-7683(91)90230-D
    [10]
    ZHOU Xiao-ping.Analysis of the localization of deformation and the complete stress-strain relation for mesoscopic heterogeneous brittle rock under dynamic uniaxial tensile loading[J].International Journal of Solids and Structures,2004,41(5/6):1725—1738. doi: 10.1016/j.ijsolstr.2003.07.007
    [11]
    FENG Xi-qiao,YU Shou-wen.Micromechanical modelling of tensile response of elastic-brittle material[J].International Journal of Solids and Structures,1995,32(22):3359—3372. doi: 10.1016/0020-7683(94)00305-G
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2257) PDF downloads(542) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return