Zhao Shi-ying. The Differentia, Geometric Principle of the Nonholonomic Mechanical Systems of Chetaev’s Type[J]. Applied Mathematics and Mechanics, 1986, 7(9): 847-860.
Citation: Zhao Shi-ying. The Differentia, Geometric Principle of the Nonholonomic Mechanical Systems of Chetaev’s Type[J]. Applied Mathematics and Mechanics, 1986, 7(9): 847-860.

The Differentia, Geometric Principle of the Nonholonomic Mechanical Systems of Chetaev’s Type

  • Received Date: 1985-07-03
  • Publish Date: 1986-09-15
  • This paper deals with the nonholonomic mechanical systems of Chetaev's type by use of modern differential geometric methods.Based on a precise definition of Chetaev-type constraint pfaffian systems,the differential geometric structure is given for the description of nonholonomic mechanical systems.In thisframwork,the classical theory of Lagrange's equations with nonholonomic constraints is put into an invariant and coordinate free form.Furthermore,the problems of constraint imbedding and conservation laws are discussed within thisframwork,and the Noether-type thereom on constraint-imbedding submanifolds is obtained.
  • loading
  • [1]
    Abraham,,R.and J.E.Marsden,Foundations of Mechanics(2nd ed.),Benjamin/Curmming,Reading,MA(1978).
    [2]
    Masden,J.E.and T.J.R.Hughes,Mathematical Foundations of Elasticity,Prentice-Hall,Inc,Englewood Cliffs,N.J.(1983).
    [3]
    Bleecker,D.Gauge Theory and Varational Principles,Addison-Wesley Pub.Com,Inc,Massachusetts(1981).
    [4]
    Hermann,R.,Geometry,Physics and Systems,Dekker,New York(1973).
    [5]
    Edelen,D.G.B.,Lagrangian Mechanics of Nonconservative Nonholonomic Systems,Noordhoff,Leyden(1977).
    [6]
    Hermann,R.,The Differential geometric structure of general mechanical systems from the Lagrangian point of view,J.Math.Phys.,23(1982),2077-2089.
    [7]
    Langlois,M.,Sur la Mecanique analytique du corps solie et des systemes non holonomes a liaisons du type chetaev,These de Doctorat d'Etat,Besancon,France(1982).
    [8]
    Ghori,Q.K.and M.Hussain,Poincaré equations for nonholonomic dynamical systems,ZAMM,53(1973),391-396.
    [9]
    Cantrijin,F.,Vector fields generating invariants for classical dissipative systems,J.Math.Phys.,23(1982),1589-1595.
    [10]
    Garia,P.L,The Poincaré-Cardan invariant in the calculus variations,Symp.Math.,14(1974),219-246.
    [11]
    Poincare,H,Sur une forme nouvelle des equations de la mecanique,Comp.Rend.Acad.Sci.,132(1901),360-371.
    [12]
    Четаеъ Н.Г.,Об уравнениях пуанкаре,ПММ,5(1941),243-252.(in Russian),
    [13]
    Румянцев В.В.,Об интегральных принципах для неголономных систем,ПММ,46(1982).3-12.
    [14]
    Chetaev,N.G.,on Gauss principle,Lzv.Fiziko-Mat.Obshch.,6(1933),68-71.(in Rursian)
    [15]
    Mei Feng Xang,Nouvelles equations du mouement des systemes mecaniques nonholonomic,These de Doctorat d'Etat,Nantes,France(1982).
    [16]
    NOether,E.,Invariante variationsprobleme,Ges.Wiss.Goettingen,2(1981),235-257.
    [17]
    Sarlet,W.and F.Cantrijn,Generalization of Noether's tneorem in classical mechanics,SIAM Rew.,23(1981),467-494.
    [18]
    Ghori,Q.K.,Conservation laws for dynamical systems in Poincare-Chetaev variables,Arch.Rat.Mech.Ana.64(1977),327-337.
    [19]
    Diukic,Dj.S.,Conservation laws in classical mechanics for quasi-coordinates,Arch.Rat.Mech.Ana.56(1974),79-98.
    [20]
    Козлов В.В.и Н.Н.Колеоников,Отеоремахцинамики,ПММ,42(1978),28-33.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1986) PDF downloads(1030) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return