Shen Hui-chuan. Chaplygin Equation in Three-Dimensional Non-Constant Isentropic Flow——The Theory of Functions of a Complex Variable under Dirac-Pauli Represen tation and Its Application in Fluid Dynamics(Ⅲ)[J]. Applied Mathematics and Mechanics, 1986, 7(8): 703-712.
Citation: Shen Hui-chuan. Chaplygin Equation in Three-Dimensional Non-Constant Isentropic Flow——The Theory of Functions of a Complex Variable under Dirac-Pauli Represen tation and Its Application in Fluid Dynamics(Ⅲ)[J]. Applied Mathematics and Mechanics, 1986, 7(8): 703-712.

Chaplygin Equation in Three-Dimensional Non-Constant Isentropic Flow——The Theory of Functions of a Complex Variable under Dirac-Pauli Represen tation and Its Application in Fluid Dynamics(Ⅲ)

  • Received Date: 1985-05-01
  • Publish Date: 1986-08-15
  • This work is the continuation of the discussion of ref, [1], In this paper we resolve the equations of isentropic gas dynamics into two problems: the three-dimensional non-constant irrotational flow (thus the isentropic flow, too), and the three-dimensional non-constant indivergent flow(i.e, the incompressible isentropic flow).We apply the theory of functions of a complez variable under Dirac-Pauli representation and the Legendre transformation,transform these equations of two problems from physical space into velocity space,and obtain two general Chaplygin equations in this paper, The general Chaplygin equation is a linear difference equation,and its general solution can be expressed at most by the hypergeometric functions, Thus we can obtain the general solution of general problems for the three-dimensional non-constant isentropic flow of gas dynamics.
  • loading
  • [1]
    沈惠川,Dirac-Pauli表象的复变函数理论及其在流体力学中的应用(I).应用数学和力学,7, 4 (1986), 365-382.
    [2]
    沈惠川,均匀不可压缩蠕流动力学的通解,自然杂志,7, 10 (1984) 799; 7,12 (1984),940.
    [3]
    钱学森,《气体动力学诸方程》(《气体动力学基本原理》A编),徐华舫译,科学出版社(1966).
    [4]
    Ландау Л.Д.и Е.М.Лифшип,《连续介质力学》,彭旭麟译,人民教育出版社(1958).,《流体力学》,孔祥言、徐燕侯、庄礼贤译,高等教育出版社(1983.1984).
    [5]
    Böhm, D,关于量子力学"隐"变数解释的建议,自然辩证法研究通迅,3 (1959), 42;4 (1959), 63.
    [6]
    谷内俊弥,西原功修,《非线性波动》,徐福元等译,原子能出版社(1981).
    [7]
    Eckhaus, W, and A, Van Harten,《逆散射变换和孤立子理论》,黄迅成译,陈以鸿校.上海科学技术文献出版社(1984).
    [8]
    Oswatitsch, K 《气体动力学》,徐华舫译,科学出版社(1965).
    [9]
    Chaplygin, C, A.,Über gasstrahlen, Wiss, Ann, Univ,Moskau Moth, Phys,21(1904),1-121,or NACA TM 1063.
    [10]
    Ringleb, F,Lösungen der differentialgleichung einer adiabatischen strömung, ZAMM,20 (1940),185-198.
    [11]
    沈惠川,Navier-Stokes方程的精确解.Dirac-Pauli表象的复变函数理论及其在流体力学中的应用(I),应用数学和力学.7, 6 (1986), 517-522.
    [12]
    Prandtl, L, K, OsWatitsch and K, Wieghardt,《流体力学概论》,郭永怀、陆士嘉译,科学出版社(1981).
    [13]
    Fung, Y, C,(冯元祯),《连续介质力学导论》,李松年、马和中译,科学出版社(1984).
    [14]
    汤川秀榭,《现代物理学の基碰》[第一版],Vol. 1,《古典物理学》(I),岩波害店(1975).
    [15]
    Dirac, P.A. M.,《量子力学原理》.陈咸亨译.科学出版社(1965).
    [16]
    Fliigge, S,《实用量子力学》,宋孝同等译,人民教育出版社(1981-1983).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2671) PDF downloads(622) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return