Ge Wei-gao. Harmonic Solutions of Some Second-Order Nonlinear Equations under a Periodic Force[J]. Applied Mathematics and Mechanics, 1985, 6(10): 929-937.
Citation: Ge Wei-gao. Harmonic Solutions of Some Second-Order Nonlinear Equations under a Periodic Force[J]. Applied Mathematics and Mechanics, 1985, 6(10): 929-937.

Harmonic Solutions of Some Second-Order Nonlinear Equations under a Periodic Force

  • Received Date: 1984-07-31
  • Publish Date: 1985-10-15
  • In this paper we prove some theorems on the existence of harmonic solutions of some second-order nonlinear equations under a periodic force. These theorems extend relevant results in refs [1]-[8].
  • loading
  • [1]
    Lefschitz.S.,Existence of periodic solutions for certain differential equations,Proc.Nat.,Ac.Sci.,29(1943),29-32.
    [2]
    Levinson,N.,On the existence of periodic solutions for second order differential equations with a forcing term,Jour.Math.Phys.,22(1943).
    [3]
    De Castro.A.,Sulle oscillazioni non lineari dei sistemi di uno o piúgradi diliberta,Rend.Sem.Mat.Univ.,22(1953).
    [4]
    Reuter,G.E.H.,A boundedness theorem for nonlinear differential equations of second order,Proc.Cambr.Phil.Soc.,47(1951).
    [5]
    Mizohata,S.and M.Yamaguti,On the existence of periodic solutions of the non-linear differential equation x+a(x)x+φ(x)=p(t),Mem.Coll.Sci.Kyoto Univ.,Ser.A,27(1952).
    [6]
    Graef,J.R.,On the generalized liénard equation with negative damping,J.Diff.Eqs.,12(1972).
    [7]
    李曾淑、王墓秋,论具有阻尼的Duffing方程的周期解,科学通报,22(1980)
    [8]
    Ascari.A.,Studio asintotico di unequatione relativa alla dinamica del punto.Rend.Ist Lamb.Sci.Lett.,16,2(1952).
    [9]
    秦元勋、王联、王慕秋,《运动稳定性理论与应用》,科学出版社(1981).
    [10]
    贺建勋,关于不连续系统的普遍唯一性定理,数学学报,26,3(1983).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1793) PDF downloads(556) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return