Li Kai-tai, Huang Ai-xiang, Li Du, Liu Zhi-xing. The Conjugate Gradient Method and Block Iterative Method for Penalty Finite Element of Three-Dimensional Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 1983, 4(6): 821-834.
Citation: Li Kai-tai, Huang Ai-xiang, Li Du, Liu Zhi-xing. The Conjugate Gradient Method and Block Iterative Method for Penalty Finite Element of Three-Dimensional Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 1983, 4(6): 821-834.

The Conjugate Gradient Method and Block Iterative Method for Penalty Finite Element of Three-Dimensional Navier-Stokes Equations

  • Received Date: 1982-12-12
  • Publish Date: 1983-12-15
  • A conjugate gradient and block iterative algorithm for element solution of penalty variational form of Navier-Stokes equations are presented. Because the algorithm of solving single variable minimizing problem is simplified, the computing time is greatly saved.In this paper numerical examples are also provided.
  • loading
  • [1]
    李开泰、黄艾香、马逸尘、李笃、刘之行.Navier-Stokes问题加罚变分形式的最优控制有限元逼近.西安交通大学学报,16. 1(1982). 85-88.
    [2]
    李笃,三维Navier-Stukes问题的共扼梯度法及数值试验.西安交通大学学报,16, 4 (1982),81-90.
    [3]
    刘之行,三维Navier-Stokes问题加罚变分形式的分块迭代法及其应用程序,西安交通大学学报,16,4 (1982). 91-102.
    [4]
    Bristeau,M.O.,O.Pironneau,R.Glowinski,J.Periaux and P.Perrier,On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods (I):Least square formulation and conjugate gradient solution of the continuous problems,Comp.Math.Appl.Mech.Eng.(17)/(18),(1979),619-657.
    [5]
    Giraut,V.,and P.A.Raviart,Finite Element Approximation for the Navier-Stokes Equations,Lecture Notes in Mathematics,Vol.749,Springer-Verlag,Berlin,(1980).
    [6]
    Teman,R.,Navier-Stokes Equations,North-Holland,Amsterdam,(1977).
    [7]
    Reddy,J.N.,On the Mathematical Theory of the Penalty-Finite Elements for Navier-Stokes Equations,Proceedings of the Third International Conference onFinite Elements in Flow Problems,Vol.2,(1980)
    [8]
    Zienkiewicz,O.C.,Constrained Variational Principles and Penalty Function Methods in Finite Element Analysis,Lecture Notes in Mathematics,P.363(Edited by Dald and B.B.Eckman),Springer-Verlag,New York,(1974).
    [9]
    Falk,R.S.,and J.T.King,A penalty and extrapolation method for the stationary Stokes equations,SIAM.J.Numer.Anal 13(1979),814-829.
    [10]
    Bercoviex,M.,and M.Engelman,A finite element for the numerical solution of viscous incompressible flows,J.Comp.Phys.30(1979),181-201.
    [11]
    Hughes,T.J.R.,W.K.Liu and A.Brooks,Finite element analysis of incompressible viscous flows by the penalty function formulation,J.Comp.Phys.,30(1979) 1-60.
    [12]
    Song,Y.J.,J,T.Oden and N.Kikuchi,Discrete LBB-Conditions for RIP-Finite Element Methods,TICON Report,80-7(1980).
    [13]
    Oden,J.T.,RIP-Methods for Stokesian Flows,Finite Elements in Fluids,Vol.4,John Wiley Sons.
    [14]
    Oden,J.T.,Penalty Methods and Selective Reduced Integration for Stokesian Flow,Proceedings of the Third International Conference on Finite Elements in Flow Problems,Banff.Alberta,Canada,(1980),140-145.
    [15]
    Oden,J.T.,Penalty Finite Element Methods for Constrained Problems in Elasticity,Symposium on Finite Element Methods,Hefei, Anhui, China (1981).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1621) PDF downloads(600) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return